• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 14
  • 14
  • 8
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite element analysis of elastic-plastic coated surfaces under normal indentation by a deformable indenter

Tang, Kok Cheong January 1998 (has links)
No description available.
2

The structure and control of Ti2N phases produced by unbalanced magnetron sputtering

Yang, Shicai January 1997 (has links)
Physical vapour deposition (PVD) techniques used for the application of advanced surface engineering materials have been developed over many years, but only in about the last 10 years has the unbalanced magnetron sputtering (UBMS) PVD technique been developed and emerged as one of the most promising techniques for depositing reliable and high quality films used in industrial production. Hard coatings have been studied for many years for the purpose of improving the performance of various tools, mechanical parts, and engineering components. The most studied binary hard coatings (such as stoichiometric titanium nitrides and titanium carbides) and the ternary hard coating (such as titanium carbonitride) have been developed for wear resistance for many years. Although many investigations have been made into the production of coatings with stoichiometric phases, it is both scientifically and commercially interesting to investigate the production and reproducibility of the pure titanium sub-nitride Ti2N films. The first results in chapter 5 describe work carried out to investigate the effect of nitrogen and carbon concentration within the films and was a prelude to the main activity of the development of Ti2N films using commercial conditions. The work for Ti2N was carried out without substrate rotation in the UBMS coating process. The static deposition processes were studied to give a better understanding of the effect of partial pressures on the compositions of the Ti-N films. The phase development as a function of the composition of the films was investigated. The main contribution during this procedure was to achieve a suitable range of nitrogen partial pressure by which the films containing pure Ti2N phase were produced using a UBMS deposition technique. The nitrogen content of the film was very sensitive to variation in nitrogen partial pressure and the nitrogen concentration influenced the phases developed in the films. The reproducibility of the pure Ti2N phase was also discussed in this initial work. A series of extensive experiments were conducted to investigate the formation of Ti2N phase in the UBMS deposition processes using one to three fold rotations. The nitrogen partial pressure of the deposition process was basically determined from the results of the initial work. The effect of substrate rotation on the film composition during processing was studied. In general the film deposited using substrate rotation consisted of different composition using the same chamber condition in one process in which the nitrogen content of the coating increased from one fold rotation to three fold rotation. The film containing dominant eTi2N phase could be produced on a sample using three fold rotation in a process whilst the multiphase compositions (aTiN0.3 + eTi2N) were developed on the sample using the one and two fold rotations in the same process. Characteristics of the eTi2N films and the films containing multiphase compositions were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), glow discharge optical emission spectrometer (GDOES), X-ray diffraction (XRD), and a variety of mechanical testing instruments. The eTi2N films have very smooth surface, very dense and fine columnar structure, relatively high hardness, and excellent adhesion with the substrate. The drilling tests using coated high speed steel drills compared the coatings containing eTi2N phase with those containing a single TiN phase and showed excellent wear resistant results.6.
3

Deposition and Phase Transformations of Ternary Al-Cr-O Thin Films

Khatibi, Ali January 2011 (has links)
This thesis concerns the ternary Al-Cr-O system. (Al1-xCrx)2O3 solid solution thin films with 0.6<x<0.7 were deposited on Si(001) substrates at temperatures of 400-500 °C by reactive radio frequency magnetron sputtering from metallic targets of Al and Cr in a flow controlled Ar / O2 gas mixture. As-deposited and annealed (Al1-xCrx)2O3 thin films were analyzed by x-ray diffraction, elastic recoil detection analysis, scanning electron microscopy, transmission electron microscopy, and nanoindentation. (Al1-xCrx)2O3 showed to have face centered cubic structure with lattice parameter of 4.04 Å, which is in contrast to the typical corundum structure reported for these films. The as-deposited films exhibited hardness of ~ 26 GPa and elastic modulus of 220-235 GPa. Phase transformation from cubic to corundum (Al0.32Cr0.68)2O3 starts at 925 °C. Annealing at 1000 °C resulted in complete phase transformation, while no precipitates of alumina and chromia were observed. Studies on kinetics of phase transformation showed a two-step thermally activated process; phase transformation and grain growth with the apparent activation energies 213±162 and 945±27 kJ/mol, respectively.
4

Development and characterization of CrN/CrAlN multilayer coatings deposited by hybrid magnetron sputtering process / Desenvolvimento e caracterização de recobrimentos multicamada de CrN/CrAlN depositados por processo híbrido de Magnetron Sputtering

Castilho, Bruno César Noronha Marques de 08 June 2018 (has links)
New restrictions and regulations regarding internal combustion engines introduced severe mechanical and thermo-mechanical loads on engine parts, mostly on piston rings, leading to high wear and premature damage, thus causing oil leakage into the combustion chamber and increasing emissions. One of the most viable solutions to overcome these issues is the use of coatings to change surface properties. Coatings produced by High Power Impulse Magnetron Sputtering (HiPIMS) and Direct Current Magnetron Sputtering (dcMS) have shown promising results to form dense coatings with high hardness and high wear resistance. Those properties can be further enhanced by using a periodic structure in the form of multilayers of different materials. In this study, we proposed a hybrid process with HiPIMS and dcMS to produce multilayer coatings of CrN and CrAlN. Different target combinations and negative substrate bias were studied. Furthermore, the base layer influence and an evaluation of the periodicity effects were presented. Structure and morphology of the coatings were characterized with X-Ray Diffraction, Scanning Electron Microscopy and Atomic Force Microscopy. Meanwhile, instrumented nanohardness, corrosion and wear tests were performed to characterize mechanical, electrochemical and tribological properties. Results showed that the choice of target combination and bias values are fundamental for enhancing mechanical and tribological properties. On the other hand, we found no evidence of superlattice hardening when changing periodicity but an increase in corrosion resistance when reducing periodicity was found. The combination of targets, substrate bias, base layer and periodicity presented here showed promising results on wear tests, especially when compared with the current coating under the same engine conditions. / Novas restrições e regulamentações de motores de combustão interna introduziram severas cargas mecânicas e termomecânicas no motor, principalmente nos anéis de pistão, o que leva a um alto desgaste e ao dano prematuro dos mesmos e causa vazamentos de óleo na câmara, aumentando as emissões de poluentes. Uma das soluções mais viáveis para solucionar este problema é o uso de recobrimentos para alterar as propriedades da superfície. Recobrimentos produzidos pelas técnicas High Power Impulse Magnetron Sputtering (HiPIMS) e Direct Current Magnetron Sputtering (dcMS) mostraram resultados promissores na formação de filmes densos com elevada dureza e resistência ao desgaste. Essas propriedades podem ser melhoradas com a utilização de estruturas periódicas na forma de multicamadas. Nesse estudo, foi proposto um processo híbrido de HiPIMS e dcMS para produzir recobrimentos multicamadas de CrN/CrAlN. Diferentes combinações de alvos e de valores de polarização negativa do substrato (bias) foram estudadas. Além disso, foram apresentadas a influência da camada base e a avaliação dos efeitos da mudança de periodicidade. Estrutura e morfologia dos recobrimentos foram caracterizadas por Difração de Raios-X, Microscopia Eletrônica de Varredura e Microscopia de Força Atômica. As caracterizações mecânica, eletroquímica e tribológica foram realizadas com ensaios de Nanodureza Instrumentada, Corrosão e Desgaste. Os resultados mostram que a escolha da combinação de alvos e de valores de bias são fundamentais para a melhoria das propriedades mecânicas e tribológicas. Por outro lado, não foram encontradas evidências de endurecimento devido ao efeito de super-redes com a variação de periodicidade, mas um aumento da resistência à corrosão foi evidenciado. A combinação de alvos, bias, camada base e periodicidade apresentadas aqui mostraram resultados promissores em testes de desgaste, principalmente quando comparadas com os recobrimentos utilizados comercialmente nas mesmas condições de trabalho do motor.
5

Investigation of interfacial microstructure of CrN coatings on HSS substrates pretreated by HIPIMS for adhesion enhancement

Jädernäs, Daniel January 2006 (has links)
<p>In this study, six dc Magnetron Sputtered (dcMS) CrN hard coatings were deposited on pretreated High Speed Steel (HSS) to achieve different interface architectures. The aim was to correlate the interfacial microstructure to the adhesion of the coatings. The substrates were pretreatment using the Ionized Physical Vapor Deposition (IPVD) method High Power Impulse Magnetron Sputtering (HIPIMS) using a Cr target in an inert atmosphere varying the substrate bias ($U_b$) between 0 V and 1100 V at ambient temperature as well as at a substrate temperature of 400$^\circ$C. The deposition parameters were chosen to show how kinetically induced diffusion, etching and implantation changes the interface chemistry and structure and to investigate their effect on the adhesion on the film. At elevated temperatures, the diffusion will be thermally driven. Annealing of the deposited samples were, therefore, performed at 900 K in an Ar atmosphere. The films were characterized employing XRD, HR-TEM, A-STEM and by scratch test measurements to see how the the interface microstructure can be correlated to the adhesion of the coating. The study shows that a sputter cleaned substrate surface with well preserved crystal structure of the substrate enhances the adhesion of the coating by promotion of local epitaxial growth. However, annealing was also shown to have a large effect on the adhesion enhancement by allowing for interdiffusion in the interface region and due to promotion of interface strain relaxation. Implantation of target material on the other hand had limited influence on the adhesion compared to the clean oxide free surfaces. The low adhesion improvement when gradually changing the chemical composition at the interface is assumed to stem from that the radiation induced defects and strain diminished the positive effect of this gradient.</p>
6

Investigation of interfacial microstructure of CrN coatings on HSS substrates pretreated by HIPIMS for adhesion enhancement

Jädernäs, Daniel January 2006 (has links)
In this study, six dc Magnetron Sputtered (dcMS) CrN hard coatings were deposited on pretreated High Speed Steel (HSS) to achieve different interface architectures. The aim was to correlate the interfacial microstructure to the adhesion of the coatings. The substrates were pretreatment using the Ionized Physical Vapor Deposition (IPVD) method High Power Impulse Magnetron Sputtering (HIPIMS) using a Cr target in an inert atmosphere varying the substrate bias ($U_b$) between 0 V and 1100 V at ambient temperature as well as at a substrate temperature of 400$^\circ$C. The deposition parameters were chosen to show how kinetically induced diffusion, etching and implantation changes the interface chemistry and structure and to investigate their effect on the adhesion on the film. At elevated temperatures, the diffusion will be thermally driven. Annealing of the deposited samples were, therefore, performed at 900 K in an Ar atmosphere. The films were characterized employing XRD, HR-TEM, A-STEM and by scratch test measurements to see how the the interface microstructure can be correlated to the adhesion of the coating. The study shows that a sputter cleaned substrate surface with well preserved crystal structure of the substrate enhances the adhesion of the coating by promotion of local epitaxial growth. However, annealing was also shown to have a large effect on the adhesion enhancement by allowing for interdiffusion in the interface region and due to promotion of interface strain relaxation. Implantation of target material on the other hand had limited influence on the adhesion compared to the clean oxide free surfaces. The low adhesion improvement when gradually changing the chemical composition at the interface is assumed to stem from that the radiation induced defects and strain diminished the positive effect of this gradient.
7

Magnetic resonance microscopy of alkyd polymers and emulsions

Ciampi, Elisabetta January 1999 (has links)
Alkyd emulsions are currently being developed for coating applications. These paints combine the technical advantages of alkyd polymers, which give coatings of a high gloss finish, with the environmental and health benefits of solvent-free systems. Nonetheless, the drying and film formation of these systems involve several steps, none of which is well understood yet. These include creaming or sedimentation, evaporation of the continuous water phase, coalescence of the alkyd droplets, a possible phase-inversion, and the oxidative cross-linking of the alkyd polymer to form a hard coating. In this thesis. Magnetic Resonance Microscopy is used to investigate the film formation of alkyd emulsion coatings. As the process is complex, studies on a different range of emulsions and related systems are performed to gain further insight into the different steps involved. A combination of Liquid State Microscopy, diffusometry and broad line imaging (Stray Field Magnetic Resonance Imaging) is employed, and it is shown that this combination provides results extremely rich in information. First, a study of the cream layer and the creaming dynamics of model bulk oil-in-water emulsions containing different concentrations of thickener is presented. The experimental data are compared to the predictions of a numerical model, and evidence is gained that the presence of the thickener induces flocculation according to a depletion mechanism. Then, the water evaporation from alkyd emulsion droplets is investigated and the water concentration across the droplet is modelled according to an original model based on lateral diffusion of water. There is no evidence from spectroscopy and diffusometry for phase-inversion during the drying of alkyd emulsion coatings. Finally the cross-linking of alkyds containing driers is found to be non-uniform across the film thickness.
8

Effects of Ti alloying of AlCrN coatings on thermal stability and oxidation resistance

Forsén, Rikard, Johansson, M P., Odén, Magnus, Ghafoor, Naureen January 2013 (has links)
Quaternary cubic (TixCr1 − xAl~ 0.60)1 N1 coatings with 0 &lt; x &lt; 0.33 have been grown using reactive cathodic arc evaporation. When adding Ti the hardness was retained after annealing up to 1100 °C which is a dramatic improvement compared to CrAlN coatings. The coatings showed an age hardening process caused by spinodal decomposition into coherent TiCr- and Al-rich cubic TiCrAlN domains and the formation of hexagonal AlN precipitates and cubic TiCrN domains in the vicinity of the grain boundaries. The improved hardness was attributed to the stabilization of the cubic structure suppressing the formation and growth of hexagonal AlN. Furthermore, the presence of Ti atoms generated incoherent nanometer-sized crystallites within the hexagonal AlN precipitates disrupting the hexagonal lattice during the coarsening process. The addition of Ti promoted the formation of a TiO2 layer over Al2O3 resulting in a lower oxidation resistance. However, by tuning the composition it is possible to design coatings to have both good oxidation resistance and good high temperature mechanical stability. / <p>Funding Agencies|SSF project Designed multicomponent coatings, MultiFilms||</p>
9

Nanocomposite coatings based on quaternary metalnitrogen / Coating systems based on ternary and quaternary metal-carbide, metal-nitride, and nano-carbon

Walock, Michael 01 November 2012 (has links)
Lors de ce projet, des revêtements de CrN-WC ont été étudiés en temps que matériaux hybrides durs et résistants. L'association d'un carbure et d'un nitrure résistants bien à la corrosion et obtenus dans des conditions optimales de dépôt permettra d'avoir des matériaux de protection contre l'usure, la corrosion mais aussi des dépôts servant de couches tampon à du diamant nanocristallin dont l'adhérence est mauvaise. Tout d'abord nous avons déterminé la faisabilité du système de CrN-WC et son utilisation comme couche intermédiaire pour du diamant nanocristallin. En faisant varier les paramètres de dépôt, nous avons optimisé la microstructure, les caractéristiques chimiques, mécaniques et tribologiques de nos couches. Si le système CrN-WC adhère relativement bien sur silicium, ce ne fut pas le cas sur acier. Les propriétés mécaniques de ces dépôts ont été par ailleurs plus faibles que celles que nous attendions. Nous avons ensuite étudié l'influence de la température sur nos dépôts de CrN-WC. En effet, le fait de chauffer lors du dépôt permet d'augmenter l'adhérence des couches et d'améliorer leurs propriétés mécaniques. Les revêtements obtenus à haute température ont bien montré une amélioration marquée de leurs diverses caractéristiques par rapport aux dépôts obtenus sans chauff. / For this project, CrN-WC coatings are investigated as a hybrid hard and tough material. The use of a hard-carbide with a corrosion-resistant nitride may produce tailored coatings with the desired combination of properties for use as a stand-alone protective coating, or as a basis for nanocrystalline diamond deposition. The work is divided into three stages. The initial study determined the viability of the CrN-WC system, and its use as an interlayer for nanocrystalline diamond. This successful study was followed by a variation of deposition conditions at low deposition temperature. By varying the deposition parameters, the microstructure, chemical, mechanical, and tribological behavior may be optimized. While the system has relatively good adhesion to silicon substrates, its adhesion to steel was lacking. Additionally, the system showed lower than expected mechanical properties. The final step increased the deposition temperature. The aim here was to increase adhesion and improve the mechanical properties. Prior results with other systems show consistent improvement of mechanical properties at elevated deposition temperatures. The high deposition temperature coatings showed marked improvement in various characteristics over their low deposition temperature cousins.
10

Behavior of cutting tool coating material Ti<sub>1-x</sub>Al<sub>x</sub>N at high pressure and high temperature / Faser i Ti<sub>1-x</sub>Al<sub>x</sub>N-ytbeläggningar vid högt tryck och hög temperatur

Dilner, David January 2009 (has links)
<p>The high pressure and high temperature (HPHT) behavior of Ti<sub>1-x</sub>Al<sub>x</sub>N coatings on cutting tool inserts have been of interest for this diploma work. A literature study of HPHT techniques as well as measurement methods has been done. A diamond anvil cell (DAC) would be a good device to achieve high pressure and high temperature conditions on small samples. Another way to obtain these conditions would be a cutting test, which has been performed on a Ti<sub>1-x</sub>Al<sub>x</sub>N coated cutting tool insert with x = 0.67. Also a cubic press could be used to apply HPHT on a     Ti<sub>1-x</sub>Al<sub>x</sub>N sample or a large volume press on a whole cutting tool insert. To measure hardness on thin coatings a nanoindentor could be used, which have been done on heat-treated Ti<sub>0.33</sub>Al<sub>0.67</sub>N and TiN samples. X-ray diffraction (XRD) is a suitable method to measure phase composition of a sample and was performed on the cutting tested insert as well as on an untreated reference insert. Three ways to continue this project have been outlined all starting with more comprehensive cutting tests.</p>

Page generated in 0.1053 seconds