• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microwave-assisted synthesis of non-oxide ceramic powders

Hassine, Nabile January 1994 (has links)
No description available.
2

"Reactive hard templating" : from carbon nitrides to metal nitrides

Fischer, Anna January 2008 (has links)
Nanostructured inorganic materials are routinely synthesized by the use of templates. Depending on the synthesis conditions of the product material, either “soft” or “hard” templates can be applied. For sol-gel processes, usually “soft” templating techniques are employed, while “hard” templates are used for high temperature synthesis pathways. In classical templating approaches, the template has the unique role of structure directing agent, in the sense that it is not participating to the chemical formation of the resulting material. This work investigates a new templating pathway to nanostructured materials, where the template is also a reagent in the formation of the final material. This concept is described as “reactive templating” and opens a synthetic path toward materials which cannot be synthesised on a nanometre scale by classical templating approaches. Metal nitrides are such kind of materials. They are usually produced by the conversion of metals or metal oxides in ammonia flow at high temperature (T > 1000°C), which make the application of classical templating techniques difficult. Graphitic carbon nitride, g-C3N4, despite its fundamental and theoretical importance, is probably one of the most promising materials to complement carbon in material science and many efforts are put in the synthesis of this material. A simple polyaddition/elimination reaction path at high temperature (T = 550°C) allows the polymerisation of cyanamide toward graphitic carbon nitride solids. By hard templating, using nanostructured silica or aluminium oxide as nanotemplates, a variety of nanostructured graphitic carbon nitrides such as nanorods, nanotubes, meso- and macroporous powders could be obtained by nanocasting or nanocoating. Due to the special semi-conducting properties of the graphitic carbon nitride matrix, the nanostructured graphitic carbon nitrides show unexpected catalytic activity for the activation of benzene in Friedel-Crafts type reactions, making this material an interesting metal free catalyst. Furthermore, due to the chemical composition of g-C3N4 and the fact that it is totally decomposed at temperatures between 600°C and 800°C even under inert atmosphere, g-C3N4 was shown to be a good nitrogen donor for the synthesis of early transition metal nitrides at high temperatures. Thus using the nanostructured carbon nitrides as “reactive templates” or “nanoreactors”, various metal nitride nanostructures, such as nanoparticles and porous frameworks could be obtained at high temperature. In this approach the carbon nitride nanostructure played both the role of the nitrogen source and of the exotemplate, imprinting its size and shape to the resulting metal nitride nanostructure. / Die Nanostrukturierung anorganischer Materialien, d.h. die Kontrolle ihrer Form und Größe auf der Nanometerebene durch unterschiedliche Herstellungsverfahren, ist ein sich immer noch erweiterndes Forschungsgebiet. Eine solche Nanostrukturierung wird oft über sogenannte Templatierungsverfahren erreicht: Hier werden Formgeber (Template) mit definierter Morphologie und Größe verwendet und deren Struktur in ein neues Material abgebildet. Templatierungsverfahren können, je nach der Beschaffenheit des Templats, zwischen „weich“ und „hart“ unterschieden werden. Die Begriffe beziehen sich dabei vor allem auf die mechanische und thermische Stabilität der Template, d.h. weiche Template sind vornehmlich organischer, harte Template anorganischer Natur. Wo weiche Template in milden chemischen Verfahren eingesetzt werden, werden harte Template zur Herstellung von Materialien bei Hochtemperaturverfahren verwendet (z. B. poröse Kohlenstoffe). Allgemein dienen Template ausschließlich als Strukturgeber und gehen in keiner Weise in Form einer chemischen Reaktion in die Synthese des gewünschten Materials mit ein. Gegenstand dieser Arbeit ist ein neues Templatierungsverfahren: Die „reaktive Templatierung“. Hierbei wird das Templat - neben seiner Funktion als Strukturgeber – auch als Reagenz für die Synthese des Produktes verwendet. Dieser Synthese-Ansatz öffnet damit neue Wege für die Synthese von nanostrukturierten Materialien, die durch klassische Templatierungsansätze schwer zugänglich sind. Hierzu zählen zum Beispiel die Metallnitride. Üblicherweise werden Metallnitride über die Umsetzung von Metallen oder Metalloxiden in einem Ammoniakstrom bei Mindesttemperaturen von 1000°C gewonnen, was die Anwendung klassischer Templatierungsverfahren beinahe unmöglich macht. Darüber hinaus sind konzentrierte Lauge oder Flusssäure, welche zur Entfernung klassischer harter Template benötigt werden auch Aufschlussmittel für Metallnitride. Graphitisches Kohlenstoffnitrid, g-C3N4, ist wohl eines der meistversprechendsten Materialien um Kohlenstoff in der Materialwissenschaft zu ergänzen. Es wurden bereits viele potentielle Syntheseansätze beschrieben. Eine durch Groenewolt M. erstellte Route ist die thermisch induzierte Polykondensation von Cyanamid (NCNH2) bei 550°C. Da g-C3N4 sich zwischen 600°C und 800°C vollständig in NH3 und CxNyH-Gase zersetzt, ist es eine geeignete Festkörper-Stickstoffquelle für die Herstellung von Metalnitriden. Daher boten sich nanostrukturierte graphitische Kohlenstoffnitride als geeignete reaktive Template oder Nanoreaktoren zur Herstellung von nano-strukturierten Metalnitriden an. Die Templatierung der g-C3N4-Matrix wurde über klassische Harttemplatierungsverfahren erreicht. So konnte eine Vielzahl nano-strukturierter g-C3N4 Materialien synthetisiert werden wie zum Beispiel Nanostäbchen, Nanoröhren, mesoporöse oder makroporöse graphitische Kohlenstoffnitride. Diese haben sich interessanterweise, als metalfreie Katalysatoren für die Aktivierung von Benzol in Friedel-Crafts-Acylierung und -Alkylierung erwiesen. Durch die Infiltrierung der nano-strukturierten g-C3N4-Materialien mit diversen Metal-Präkursoren und nachfolgendem Tempern bei 800°C unter Schutzgas, konnten entsprechende nano-strukturierte Metalnitride, als Nanoabdrücke der vorgegebenen Kohlenstoffnitrid Nanostrukturen hergestellt werden. So konnten TiN, VN, GaN, AlGaN und TiVN Nanopartikel synthetisiert werden, macroporöse TiN/Kohlenstoff Komposite sowie TiN Hohlkugeln. Die so hergestellten Materialien erwiesen sich als effektive basische Katalysatoren für Aldol-Kondensations Reaktionen.
3

Nanocomposite coatings based on quaternary metalnitrogen / Coating systems based on ternary and quaternary metal-carbide, metal-nitride, and nano-carbon

Walock, Michael 01 November 2012 (has links)
Lors de ce projet, des revêtements de CrN-WC ont été étudiés en temps que matériaux hybrides durs et résistants. L'association d'un carbure et d'un nitrure résistants bien à la corrosion et obtenus dans des conditions optimales de dépôt permettra d'avoir des matériaux de protection contre l'usure, la corrosion mais aussi des dépôts servant de couches tampon à du diamant nanocristallin dont l'adhérence est mauvaise. Tout d'abord nous avons déterminé la faisabilité du système de CrN-WC et son utilisation comme couche intermédiaire pour du diamant nanocristallin. En faisant varier les paramètres de dépôt, nous avons optimisé la microstructure, les caractéristiques chimiques, mécaniques et tribologiques de nos couches. Si le système CrN-WC adhère relativement bien sur silicium, ce ne fut pas le cas sur acier. Les propriétés mécaniques de ces dépôts ont été par ailleurs plus faibles que celles que nous attendions. Nous avons ensuite étudié l'influence de la température sur nos dépôts de CrN-WC. En effet, le fait de chauffer lors du dépôt permet d'augmenter l'adhérence des couches et d'améliorer leurs propriétés mécaniques. Les revêtements obtenus à haute température ont bien montré une amélioration marquée de leurs diverses caractéristiques par rapport aux dépôts obtenus sans chauff. / For this project, CrN-WC coatings are investigated as a hybrid hard and tough material. The use of a hard-carbide with a corrosion-resistant nitride may produce tailored coatings with the desired combination of properties for use as a stand-alone protective coating, or as a basis for nanocrystalline diamond deposition. The work is divided into three stages. The initial study determined the viability of the CrN-WC system, and its use as an interlayer for nanocrystalline diamond. This successful study was followed by a variation of deposition conditions at low deposition temperature. By varying the deposition parameters, the microstructure, chemical, mechanical, and tribological behavior may be optimized. While the system has relatively good adhesion to silicon substrates, its adhesion to steel was lacking. Additionally, the system showed lower than expected mechanical properties. The final step increased the deposition temperature. The aim here was to increase adhesion and improve the mechanical properties. Prior results with other systems show consistent improvement of mechanical properties at elevated deposition temperatures. The high deposition temperature coatings showed marked improvement in various characteristics over their low deposition temperature cousins.
4

The laves phase embrittlement of ferritic stainless steel type aisi 441

Sello, Maitse P 12 June 2010 (has links)
The effect of Laves phase (Fe2Nb) formation on the Charpy impact toughness of the ferritic stainless steel type AISI 441 was investigated. The steel exhibits good toughness after solution treatment at 850°C, but above and below this treatment temperature the impact toughness decreases sharply. With heat treatment below 850°C the presence of the Laves phase on grain boundaries and dislocations plays a significant role in embrittlement of the steel whereas above that temperature, an increase in the grain size from grain growth plays a major role in the impact embrittlement of this alloy. The toughness results agree with the phase equilibrium calculations made using Thermo–Calc® whereby it was observed that a decrease in the Laves phase volume fraction with increasing temperature corresponds to an increase in the impact toughness of the steel. Annealing above 900°C where no Laves phase exists, grain growth is found which similarly has a very negative influence on the steel’s impact properties. Where both a large grain size as well as Laves phase is present, it appears that the grain size may be the dominant embrittlement mechanism. Both the Laves phase and grain growth, therefore, have a significant influence on the impact properties of the steel, while the Laves phase’s precipitation behaviour has also been investigated with reference to the plant’s manufacturing process, particularly the cooling rate after a solution treatment. The microstructural analysis of the grain size shows that there is a steady increase in grain size up to about 950°C, but between 950°C and 1000°C there is a sudden and rapid 60 % increase in the grain size. The TEM analysis of the sample that was annealed at 900°C shows that the Laves phase had already completely dissolved and cannot, therefore, be responsible for “unpinning of grain boundaries” at temperatures of 900°C and higher where this “sudden” increase in grain size was found. The most plausible explanation appears to be one of Nb solute drag that loses its effectiveness within this temperature range, but this probably requires some further study to fully prove this effect. During isothermal annealing within the temperature range of 600 to 850°C, the time – temperature – precipitation (TTP) diagram for the Laves phase as determined from the transformation kinetic curves, shows two classical C noses on the transformation curves. The first one occurring at the higher temperatures of about 750 to 825°C and the second one at much lower temperatures, estimated to possibly be in the range of about 650 to 675°C. The transmission electron microscopy (TEM) analyses show that there are two independent nucleation mechanisms that are occurring within these two temperature ranges. At lower temperatures of about 600°C, the pertaining nucleation mechanism is on dislocations and as the temperature is increased to above 750°C, grain boundary nucleation becomes more dominant. Also, the morphology of the particles and the mis-orientation with the matrix changes with temperature. At lower temperatures the particles are more needle-like in shape, but as the temperature is increased the shape becomes more spheroidal. The effect of the steel’s composition on the Laves phase transformation kinetics shows that by lowering the Nb content in these type 441 stainless steels, had no significance effect on the kinetics on precipitation of the Laves phase. However, a Mo addition and a larger grain size of the steel, retard the formation of the Laves phase, although the optimum values of both parameters still need further quantification. The calculation made for the transformation kinetics of the Laves phase, using the number density of nucleation sites No and the interfacial energy, as the fitting parameters in this work, demonstrated a reasonable agreement with experimental results. / Thesis (PhD)--University of Pretoria, 2010. / Materials Science and Metallurgical Engineering / unrestricted

Page generated in 0.0495 seconds