• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 8
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Etude à l'échelle atomique de l'implantation du fer dans le carbure de silicium (SiC) : Elaboration d'un semiconducteur magnétique dilué à température ambiante. / Fe-implanted 6H-SiC Study at fine scale : Elaboration of diluted magnetic semiconductors at room temperature

Diallo, Lindor 26 September 2019 (has links)
Ce travail de thèse porte sur l’étude du carbure de silicium, dopé avec du fer dans le but de réaliser un semi-conducteur magnétique dilué à température ambiante pour des applications à la spintronique. Le dopage en fer a été réalisé par implantation ionique de type multi-énergie (30 - 160 keV) à différentes fluences, conduisant à une concentration atomique constante de 2 % de 20 à 100 nm. Il a été suivi d’un recuit à haute température dans le but d’homogénéiser la concentration en dopants. Les implantations se sont déroulées à une température de 550 °C. L’optimisation des propriétés magnétiques et électroniques du SiC–Fe, de même que la compréhension des mécanismes physiques à l’origine du magnétisme induit, ont nécessité une caractérisation poussée de la microstructure des matériaux implantés. Les objectifs de ce travail ont été d’une part, de réaliser une étude à l’échelle atomique de la nanostructure en fonction des conditions d’implantations (température, fluence) et des traitements thermiques post-implantation, et d’autre part, de déterminer les propriétés magnétiques des matériaux implantés. Dans ce travail, nous avons montré par Sonde Atomique Tomographique, la présence de nanoparticules dont la taille moyenne augmente avec la température de recuit. La cartographie chimique des nanoparticules a permis de révéler l’existence de phases riches en Fe pour les échantillons recuits. L’étude magnétique (spectrométrie Mössbauer et Squid) a montré que la contribution ferromagnétique est due principalement aux nanoparticules magnétiques et/ ou aux atomes de fer magnétiques dilués dans la matrice. La corrélation entre les propriétés structurale et magnétique a permis de montrer que les atomes de fer dilués dans la matrice et substitués sur sites de silicium contribuent au signal ferromagnétique en dessous de 300 K. Nous avons donc montré dans ce travail, que la taille et la nature des phases présentes dans les nanoparticules dépendent des conditions d’implantation et des températures de recuit et qu’il est nécessaire de recuire les échantillons à haute température pour faire apparaître un ordre ferromagnétique. / This PhD thesis focuses on the study of SiC, doped with Fe in order to elaborate a diluted magnetic semiconductor at room temperature for spintronic applications. The iron doping was carried out by ion implantation of multi-energy type (30-160 keV) at different fluences, leading to a 2% constant atomic concentration between 20 to 100 nm, followed by a high temperature annealing in the goal of homogenizing the dopant concentration. The implantation temperature during this process is 550 °C, in order to avoid amorphization. The optimization of the magnetic and electronic properties of SiC-Fe, as well as the understanding of the physical mechanisms at the origin of induced magnetism, require a thorough characterization of the microstructure of the implanted materials. The objectives of this work are, on the one hand, to carry out an atomic scale study of the nanostructure according to the implantation conditions (temperature, fluence) and the post-implantation annealing and the other hand, to characterize the magnetic properties of implanted materials. In this work, we have shown by atom probe tomographic, the existence of nanoparticles whose the average size increases with the annealing temperature. The chemical mapping of the nanoparticles shows the presence of the Fe-rich phases for the annealed samples. Magnetic study (Mössbauer spectrometry and Squid) shows the ferromagnetic contribution is due to the magnetic nanoparticles and/or the diluted Fe atoms in the matrix. The correlation between structural and magnetic properties allowed showing that diluted Fe atoms and substitute to Si sites contribute to the ferromagnetic contribution below 300 K. In coupling many characterization techniques in order to give a detailed description of the different studied samples, we have shown that the size and nature of the phase present in the nanoparticles depend on the implantation conditions and the annealing temperatures and consequently it is necessary to anneal our samples at high temperature to reveal ferromagnetic order.
12

Structural and Magnetic Properties of Epitaxial MnSi(111) Thin Films

Karhu, Eric 12 January 2012 (has links)
MnSi(111) films were grown on Si(111) substrates by solid phase epitaxy (SPE) and molecular beam epitaxy (MBE) to determine their magnetic structures. A lattice mismatch of -3.1% causes an in-plane tensile strain in the film, which is partially relaxed by misfit dislocations. A correlation between the thickness dependence of the Curie temperature (TC) and strain is hypothesized to be due to the presence of interstitial defects. The in-plane tensile strain leads to an increase in the unit cell volume that results in an increased TC as large as TC = 45 K compared to TC = 29.5 K for bulk MnSi crystals. The epitaxially induced tensile stress in the MnSi thin films creates an easy-plane uniaxial anisotropy. The magnetoelastic coefficient was obtained from superconducting quantum interference device (SQUID) magnetometry measurements combined with transmission electron microscopy (TEM) and x-ray diffraction (XRD) data. The experimental value agrees with the coefficient determined from density functional calculations, which supports the conclusion that the uniaxial anisotropy originates from the magnetoelastic coupling. Interfacial roughness obscured the magnetic structure of the SPE films, which motivated the search for a better method of film growth. MBE grown films displayed much lower interfacial roughness that enabled a determination of the magnetic structure using SQUID and polarized neutron reflectometry (PNR). Out-of-plane magnetic field measurements on MBE grown MnSi(111) thin films on Si(111) substrates show the formation of a helical conical phase with a wavelength of 2?/Q = 13.9 ± 0.1 nm. The presence of both left-handed and right-handed magnetic chiralities is found to be due to the existence of inversion domains that result from the non-centrosymmetric crystal structure of MnSi. The magnetic frustration created at the domain boundaries explains an observed glassy behaviour in the magnetic response of the films. PNR and SQUID measurements of MnSi thin films performed in an in-plane magnetic field show a complex magnetic behaviour. Experimental results combined with theoretical results obtained from a Dzyaloshinskii model with an added easy-plane uniaxial anisotropy reveals the existence of numerous magnetic modulated states that do not exist in bulk MnSi. It is demonstrated in this thesis that modulated chiral magnetic states can be investigated with epitaxially grown MnSi(111) thin films on insulating Si substrates, which offers opportunities to investigate spin-dependent transport in chiral magnetic heterostructures based on this system.
13

Ferromagnetic thin films of Fe and Fe 3 Si on low-symmetric GaAs(113)A substrates

Muduli, Pranaba Kishor 24 April 2006 (has links)
In dieser Arbeit werden das Wachstum mittels Molekularstrahlepitaxie und die Eigenschaften der Ferromagneten Fe und Fe_3Si auf niedrig-symmetirschen GaAs(113)A-Substraten studiert. Drei wichtige Aspekte werden untersucht: (i) Wachstum und strukturelle Charakterisierung, (ii) magnetische Eigenschaften und (iii) Magnetotransporteigenschaften der Fe und Fe_3Si Schichten auf GaAs(113)A-Substraten. Das Wachstum der Fe- und Fe_3Si-Schichten wurde bei einer Wachstumstemperatur von = bzw. 250 °C optimiert. Bei diesen Wachstumstemperaturen zeigen die Schichten eine hohe Kristallperfektion und glatte Grenz- und Oberflächen analog zu [001]-orientierten Schichten. Weiterhin wurde die Stabilität der Fe_(3+x)Si_(1-x) Phase über einen weiten Kompositionsbereich innerhalb der Fe_3Si-Stoichiometry demonstriert. Die Abhängigkeit der magnetischen Anisotropie innerhalb der Schichtebene von der Schichtdicke weist zwei Bereiche auf: einen Beresich mit dominanter uniaxialer Anisotropie für Fe-Schichten = 70 MLs. Weiterhin wird eine magnetische Anisotropie senkrecht zur Schichtebene in sehr dünnen Schichten gefunden. Der Grenzflächenbeitrag sowohl der uniaxialen als auch der senkrechten Anisotropiekonstanten, die aus der Dickenabhängigkeit bestimmt wurden, sind unabhängig von der [113]-Orientierung und eine inhärente Eigenschaft der Fe/GaAs-Grenzfläche. Die anisotrope Bindungskonfiguration zwischen den Fe und den As- oder Ga-Atomen an der Grenzfläche wird als Ursache für die uniaxiale magnetische Anisotropie betrachtet. Die magnetische Anisotropie der Fe_3Si-Schichten auf GaAs(113)A-Substraten zeigt ein komplexe Abhängigkeit von der Wachstumsbedingungen und der Komposition der Schichten. In den Magnetotransportuntersuchungen tritt sowohl in Fe(113)- als auch in Fe_3Si(113)-Schichten eine antisymmetrische Komponente (ASC) im planaren Hall-Effekt (PHE) auf. Ein phänomenologisches Modell, dass auf der Kristallsymmetrie basiert, liefert ein gute Beschreibung sowohl der ASC im PHE als auch des symmetrischen, anisotropen Magnetowiderstandes. Das Modell zeigt, dass die beobachtete ASC als Hall-Effekt zweiter Ordnung beschreiben werden kann. / In this work, the molecular-beam epitaxial growth and properties of ferromagnets, namely Fe and Fe_3Si are studied on low-symmetric GaAs(113)A substrates. Three important aspects are investigated: (i) growth and structural characterization, (ii) magnetic properties, and (iii) magnetotransport properties of Fe and Fe_3Si films on GaAs(113)A substrates. The growth of Fe and Fe_3Si films is optimized at growth temperatures of 0 and 250 degree Celsius, respectively, where the layers exhibit high crystal quality and a smooth interface/surface similar to the [001]-oriented films. The stability of Fe_(3+x)Si_(1-x) phase over a range of composition around the Fe_3Si stoichiometry is also demonstrated. The evolution of the in-plane magnetic anisotropy with film thickness exhibits two regions: a uniaxial magnetic anisotropy (UMA) for Fe film thicknesses = 70 MLs. The existence of an out-of-plane perpendicular magnetic anisotropy is also detected in ultrathin Fe films. The interfacial contribution of both the uniaxial and the perpendicular anisotropy constants, derived from the thickness-dependent study, are found to be independent of the [113] orientation and are hence an inherent property of the Fe/GaAs interface. The origin of the UMA is attributed to anisotropic bonding between Fe and As or Ga at the interface, similarly to Fe/GaAs(001). The magnetic anisotropy in Fe_3Si on GaAs(113)A exhibits a complex dependence on the growth conditions and composition. Magnetotransport measurements of both Fe(113) and Fe_3Si(113) films shows the striking appearance of an antisymmetric component (ASC) in the planar Hall effect (PHE). A phenomenological model based on the symmetry of the crystal provides a good explanation to both the ASC in the PHE as well as the symmetric anisotropic magnetoresistance. The model shows that the observed ASC component can be ascribed to a second-order Hall effect.

Page generated in 0.0821 seconds