Spelling suggestions: "subject:"bistatic VAr compensator"" "subject:"bistatic VAr kompensator""
1 |
Fault Calculation and Stability Analysis fora Cogeneration System in Science ParkYu, Hsueh-Cheng 27 December 2000 (has links)
ABSTRACT
With the development of high-tech industry, the power quality has become a critical issue for the industrial customers in science park. The voltage sag and power system stability problems due to fault contingency in Taipower network has caused serious production loss. The manufacturing process platforms, which are driven by power electronics equipments may shutdown when the voltage dip exceeds 30% and it will take long time for the restoration of production. To enhance the service reliability and power quality, the new cogeneration system in Hsin Chu Science Park has been selected for case study to solve the problems of short circuit capacity and voltage sag. The short circuit analysis by both ANSI and IEC is performed to find the magnitudes of fault currents. The transient stability analysis is executed to identify the critical clearing time to support the design of protective relays for tie line tripping. The static var compensator (SVC) is also considered in the simulation to investigate the mitigation of system voltage drop due to fault contingency. It is found that the implementation of cogenerators and SVC can improve the electricity service quality for high-tech customers with proper design of industrial power systems.
|
2 |
The Mitigation of Voltage Flicker for Steel Factories by Static Var Compensators and CogeneratorsTseng, Soa-Min 28 December 2000 (has links)
This investigates the voltage flicker problem of a large steel plant and presents the mitigation strategy by applying the static var compensator (SVC) and cogenerator. The fluctuation of real power and reactive power consumption by an arc furnace has been measured and recorded during the steel production process. The dynamic load model of the A/C arc furnace is derived based on the actual field data and has been included in the computer simulation by the CYME software package for load flow analysis. The block diagrams of SVC controller and the excitation system of cogenerators are considered to solve the response of reactive power compensation according to the voltage fluctuation of the control bus. To maintain the electric service reliability of arc furnace when an external utility fault occurs, the tie line tripping and load shedding is implemented to prevent the tripping of cogenerator after system disturbance. It is found that the dynamic load behavior of arc furnace in the isolated industrial power system can be well compensated by the cogenerator with adaptive control of exciter and governor to generate proper reactive power and real power according to the fluctuation of bus voltage and system frequency respectively.
|
3 |
Thyristor Switched Capacitor Mitigation System for Customer Side ApplicationsTaylor, Jason Ashley 11 May 2002 (has links)
Thyristor switched capacitors (TSCs) have found an ever increasing role in the operation of flexible AC transmission systems or FACTS. The ability of these static var compensators to regulate the voltage by consuming or supplying reactive power quickly is not only viable for transmission but is an effective measure for increasing power quality at a distribution level. The proposed design uses a variable number of logically switched capacitors to supply reactive generation per reactive demand. The design ensures that the capacitors are safely switched into service, reactive demand is accurately calculated, and the TSC will respond quickly to changes in demand. While providing fast and safe operation, the conceptual design is also flexible enough to allow for optimization of the TSC to meet the demands of specific loads.
|
4 |
PMU based PSS and SVC fuzzy controller design for angular stability analysisAhmed, Sheikh January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Shelli Starrett / Variability in power systems is increasing due to pushing the system to limits for economic purposes, the inclusion of new energy sources like wind turbines and photovoltaic, and the introduction of new types of loads such as electric vehicle chargers. In this new environment, system monitoring and control must keep pace to insure system stability and reliability on a wide area scale. Phasor measurement unit technology implementation is growing and can be used to provide input signals to new types of control. Fuzzy logic based power system stabilizer (PSS) controllers have also been shown effective in various studies. This thesis considers several choices of input signals, composed assuming phasor measurement availability, for fuzzy logic-based controllers. The purpose of the controller is to damp power systems’ low frequency oscillations. Nonlinear transient simulation results for a 4-machine two-area system and 50 machine system are used to compare the effects of input choice and controller type on damping of system oscillations.
Reactive power in the system affects voltage, which in turn affects system damping and dynamic stability. System stability and damping can be enhanced by deploying SVC controllers properly. Different types of power system variables play critical role to damp power swings using SVC controller. A fuzzy logic based static var compensator (SVC) was used near a generator to damp these electromechanical oscillations using different PMU-acquired inputs. The goal was again improve dynamic stability and damping performance of the system at local and global level. Nonlinear simulations were run to compare the damping performance of different inputs on the 50 machine system.
|
5 |
Compensadores estáticos de reativos empregados em redes de baixa tensão com geradores distribuídos de energia / Static var compensators applied in low voltage grids with distributed generatorsAlmeida, Felipe Augusto Ferreira de [UNESP] 03 November 2016 (has links)
Submitted by Felipe Augusto Ferreira de Almeida null (felipeafalmeida@gmail.com) on 2016-12-20T16:56:04Z
No. of bitstreams: 1
DISSERTACAO_FELIPE_FINAL.pdf: 3666708 bytes, checksum: 18899b06cbe9a7091fd3f037b0656174 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-12-22T10:53:09Z (GMT) No. of bitstreams: 1
almeira_faf_me_bauru.pdf: 3666708 bytes, checksum: 18899b06cbe9a7091fd3f037b0656174 (MD5) / Made available in DSpace on 2016-12-22T10:53:09Z (GMT). No. of bitstreams: 1
almeira_faf_me_bauru.pdf: 3666708 bytes, checksum: 18899b06cbe9a7091fd3f037b0656174 (MD5)
Previous issue date: 2016-11-03 / Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP) / Este trabalho aborda o emprego do Compensador Estático de Reativos (SVC) em redes de baixa tensão com geração distribuída de energia, tendo como objetivo a compensação de tensão e de fator de potência. Os principais distúrbios de qualidade de energia elétrica em baixa tensão, bem como as normas e os limites operacionais para os principais indicadores foram revisados, visando confrontação com as situações resultantes da integração do SVC no sistema elétrico. O SVC possui operação estabelecida como carga reativa controlável em sistemas de transmissão de energia, fazendo parte dos condicionadores da tecnologia FACTS (Flexible AC Transmission Systems). A exploração desta tecnologia em outro nível de tensão é o objetivo deste trabalho. As análises foram realizadas através de simulações computacionais, desenvolvidas no ambiente MATLAB, contemplando o desenvolvimento de modelos relacionados com aplicações de RCT (Reator Controlado a Tiristor), FC (Capacitor Fixo), do CCT (Capacitor Chaveado a Tiristor) e de um sistema de geração distribuída de energia elétrica trifásico em uma rede de baixa tensão a quatro fios. A metodologia para o dimensionamento dos elementos passivos dos condicionadores é apresentada, bem como a análise dos valores de potência reativa, fator de potência, distorções harmônicas e a avaliação da necessidade de utilização ou não de filtros passivos. A teoria da potência conservativa (TPC) é a metodologia utilizada para definição das grandezas elétricas e fatores de conformidade. Por fim, as características operacionais de um SVC aplicado a uma rede de baixa tensão a quatro fios são exploradas através dos resultados de simulação, com o objetivo de demonstrar a manutenção de suas características operacionais estabelecidas, no nível de baixa tensão, e apontar aspectos diferenciados quanto à regulação de fator de potência e da forma de tensão providos pelo SVC, para servir como informação de confronto frente a outras tecnologias comumente utilizadas neste nível de tensão. / This paper discusses the use of Static Var Compensator (SVC) on low voltage grids with distributed generation with the aim of voltage and power factor compensation. The main electrical power quality disturbances at low voltage as well as the rules and operational limits for the main indicators were reviewed aiming to confront the situations resulting from SVC integration in the electrical system. SVC has established operation as controllable reactive load in power transmission systems, being part of FACTS (Flexible AC Transmission Systems) technology conditioners. The application of this technology in another level of tension is the objective of this work. The analyzes were carried out through computer simulations developed in the MATLAB environment, including the development of models related to RCT (Thyristor Controlled Reactor), FC (Fixed Capacitor), CCT (Thyristor Switching Capacitor) and a threephase electric power distributed generation system in a four-wire low voltage grid. The methodology for the dimensioning of the passive elements of the conditioners is presented, as well as the analysis of the values of reactive power, power factor, harmonic distortions and the evaluation of the need to use passive filters. The conservative power theory (CPT) is the methodology used to define the electrical magnitudes and compliance factors. Finally, the operational characteristics of a SVC applied to a low-voltage four-wire network are exploited through the simulation results, in order to demonstrate the maintenance of its established operational characteristics at the low voltage level and to point out different aspects as well as the power factor regulation and voltage form provided by the SVC, to serve as confronting information.
|
6 |
Dynamická kompenzace / Dynamic Compensation of Reactive PowerHorenský, Martin January 2014 (has links)
This master’s thesis is focusing on compensation of reactive power, especially on creating demonstrative model of static var compensation unit (SVC). Main topic of thesis is to apply this device for fast balancing dynamic conversions of recieved reactive power. In theoretical part is described suitable method for determination of instantaneous power. Next, there is basic description of all means used for compensation of reactive power and detailed description of the SVC compensator. Practical part includes design of compensation unit and control program in LabVIEW. The pq theory is implemented for detection instantaneous power. The results of validating functionality of compensator are presented in the last part of thesis.
|
7 |
Requisitos de suporte de potência reativa para operação de usinas eólicasBento, José Antônio Chiabai 27 February 2013 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-04-11T14:02:57Z
No. of bitstreams: 1
joseantoniochiabaibento.pdf: 931983 bytes, checksum: e18793314d0e558922ed90cb19474dbb (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-04-24T03:37:26Z (GMT) No. of bitstreams: 1
joseantoniochiabaibento.pdf: 931983 bytes, checksum: e18793314d0e558922ed90cb19474dbb (MD5) / Made available in DSpace on 2016-04-24T03:37:26Z (GMT). No. of bitstreams: 1
joseantoniochiabaibento.pdf: 931983 bytes, checksum: e18793314d0e558922ed90cb19474dbb (MD5)
Previous issue date: 2013-02-27 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A penetração de parques eólicos nos sistemas elétricos de potência tem apresentado
um grande crescimento no Brasil e no mundo devido à disponibilidade da matéria prima, os
ventos, e à necessidade de reformulação das matrizes energéticas a fim de reduzir os impactos
ambientais decorrentes da geração de energia elétrica. Porém, as usinas eólicas apresentam
variações nos despachos de potência devido à variabilidade de velocidade dos ventos. Estas
variações causam impactos no sistema, podendo afetar a confiabilidade e a estabilidade de
tensão. Além disto, a operação de determinados tipos de aerogeradores requer suporte
adicional de potência reativa.
Uma opção para aumentar as margens operativas e acomodar as intermitências de
regime dos ventos em sistemas elétricos de potência consiste na utilização de compensadores
estáticos de reativos (CER) junto às usinas eólicas. Estes equipamentos FACTS (Flexible AC
Transmission Systems) provêm suporte de potência reativa variável e de rápido controle, de
acordo com os requisitos operacionais dos aerogeradores.
Neste sentido, o presente trabalho apresenta uma metodologia para ajuste ótimo dos
parâmetros do CER visando dar suporte de potência reativa para a operação de usinas eólicas
em sistemas elétricos de potência. Para representar as intermitências no despacho de potência
dos aerogeradores, a metodologia proposta considera diferentes cenários de vento. O
problema é modelado através de fluxo de potência ótimo (FPO), associado à técnica de
decomposição matemática de Benders. Os parâmetros de ajuste do CER são a tensão de
referência e o coeficiente de inclinação da curva característica deste equipamento em regime
permanente. Destaca-se que o ajuste ótimo deste coeficiente é inédito na literatura
especializada. Testes com sistemas do IEEE são realizados para validar a metodologia
proposta. / The penetration of wind farms in power systems has shown tremendous growth in
Brazil and in the world due to the availability of the raw material, the wind, and the need to
redefine the energy mix to reduce the environmental impacts from the electrical energy
generation. However, the wind farms have variable outputs due to the variation of wind
speeds. These outputs impact the power system and can affect the reliability and the voltage
stability. Besides, the operation of some aerogenerators requires additional support of reactive
power.
An option for handling this feature and increasing the operative margins of power
systems is the use of static VAr compensators (SVC) together with the wind farms. These
FACTS devices (Flexible AC Transmission Systems) provide a variable reactive power
support, with a fast control according to the operational requirements of the aerogenerators.
In this sense, this work presents a methodology for the optimal adjustment of the SVC
parameters to give reactive power support for wind farms operating in power systems. The
proposed methodology considers different wind scenarios to represent the variations of the
wind farms outputs. The problem is modeled through an optimal power flow (OPF) and the
Benders decomposition technique. The SVC parameters for adjustment are its reference
voltage and the coefficient of its characteristic curve in stable state. It can be highlighted that
the adjustment of this coefficient is innovative for the literature. Tests with systems of the
IEEE are performed to validate the proposed methodology.
|
8 |
Analys av reaktiv effektinmatning till överliggande nät samt optimal kondensatordrift / Analysis of reactive power input to the higher-level grid and optimal operation of capacitor banksSundström, Göran January 2017 (has links)
Bakgrunden till detta projekt är att Vattenfall Eldistribution AB (nedan kallat Vattenfall) kommer att införa ett avgiftssystem för inmatning av reaktiv effekt till sitt elnät. Avgiften införs till följd av problem på elnätet som orsakas av reaktiv effekt. Umeå Energi Elnät AB (nedan kallat Umeå Energi) har historiskt matat in reaktiv effekt vilket motiverade detta arbete som utreder den reaktiva effekten på Umeå Energis elnät samt bidrar med information om två alternativa tillvägagångssätt att bemöta avgiften. Alternativ 0 är att kompensationsutrustning inte installeras, utan att ett abonnemang på inmatning av reaktiv effekt upprättas. Alternativ 1 är att kompensationsutrustning installeras. För att utreda den reaktiva effekten erhölls och behandlades data på reaktiv effekt i Umeå Energis nät. Historisk kondensatordrift togs fram för år 2016 ur händelsehistoriken hos Umeå Energis driftcentral. Kondensatordriften år 2015 kunde enbart erhållas från ett tidigare arbete på Umeå Energi eftersom ett begränsat antal händelser lagras i händelsehistoriken. Genom att subtrahera kondensatorernas produktion från den reaktiva effekten i Umeå Energis anslutningspunkter som uppmätts av Vattenfall erhölls data som mer representerade underliggande fenomen på nätet. Utan kondensatordrift beräknades inmatningen enligt Vattenfalls definition uppgå till cirka 34 MVAr utifrån data från 2015 och 2016. För åren 2018 till och med 2023 beräknades ändringar i reaktiv effekt till följd av förändringar på Umeå Energis nät. Vid beräkningarna försummades ledningarnas induktiva karaktär, vilket gav ett tomgångsscenario med maximal produktion av reaktiv effekt. År 2023 beräknades inmatningen ska ha ökat till 59 MVAr till följd av förändringar på Umeå Energis nät. Med antagandet att Umeå Energi inte kommer att drifta kondensatorbatterierna så att inmatningen höjs föreslogs för alternativ 0 val av abonnemang på inmatning av reaktiv effekt för åren 2018 till och med 2023 utifrån de 34 MVAr som nämnts ovan och inverkan från förändringarna på nätet. År 2019 föreslogs ett abonnemang på 41 MVAr, och 2023 föreslogs ett på 59 MVAr. Kostnaderna för dessa beräknades enligt Vattenfalls tariff till 820 000 kr respektive 1 187 000 kr. Kostnaden för eventuell överinmatning av reaktiv effekt beräknades med tariffen för överinmatning årligen uppgå till maximalt 76 000 kr med 95 % sannolikhet enligt den korrigerade standardavvikelsen hos inmatningen utan kondensatordrift åren 2015 och 2016. Optimal kondensatordrift beräknades för åren 2015 och 2016 genom att addera den produktion av reaktiv effekt från befintliga kondensatorbatterier som gav minst absolutvärde i reaktiv effekt. Beroende på hur ofta kondensatordriften justerades erhölls olika resultat. En undersökning av störningar till följd av kondensatorkopplingar rekommenderas för att få en förståelse för förutsättningarna för optimal kondensatordrift. Det bedömdes inte ekonomiskt motiverbart med mer avancerad kompensationsteknik såsom statiska VAr-kompensatorer då variabla reaktorer kan kompensera dygns- och säsongsvariationer i reaktiv effekt. Den reaktiva effektproduktionen i ledningar är störst på 145 kV-nivån och kommer öka i framtiden på denna nivå. Det är därför sannolikt här kompensationsutrustning såsom reaktorer först bör installeras. För att kunna ta så bra beslut som möjligt angående den reaktiva effekten rekommenderas att snarast möjligt ingå ett arbetssätt som om avgiftssystemet redan tagits i bruk och utöka ett representativt dataunderlag. / The background of this project is that Vattenfall Eldistribution AB (hereinafter referred to as Vattenfall) will establish a system of fees for input of reactive power. This will be done due to problems in the grid caused by reactive power. Umeå Energi Elnät AB (hereinafter referred to as Umeå Energi) has historically input reactive power, motivating this work which investigates the reactive power in the grid of Umeå Energi and provides information on two alternative approaches to responding to the fee. Alternative 0 entails no installation of compensation technology, and that a subscription for reactive power input is established instead. Alternative 1 entails that compensation technology is installed. To investigate the reactive power, data on reactive power in the grid of Umeå Energi were obtained and processed. Historical operations of capacitor banks for the year 2016 were obtained from the history of events of the control center at Umeå Energi. The operations of the capacitor banks during 2015 could only be obtained from an earlier work at Umeå Energi since the number of events stored in the history is limited. By subtracting the capacitor banks’ production from the reactive power measured by Vattenfall in the connections of Umeå Energi, data more representative of underlying phenomena were obtained. Without capacitor production of reactive power, the input was calculated according to the definition of Vattenfall to about 34 MVAr, by using data from 2015 and 2016. For the years 2018 through 2023, changes in reactive power due to changes in the grid of Umeå Energi were calculated. These calculations did not consider inductances, and thus yielded zero-load scenarios with maximum reactive power production. By the year of 2023, the input was calculated to have increased to 59 MVAr due to changes in the grid of Umeå Energi. Assuming that Umeå Energi will not operate the capacitors so that the input is increased, for alternative 0 subscriptions for input of reactive power were suggested for the years 2018 through 2023 by considering the abovementioned 34 MVAr and the changes in the grid. Subscriptions of 41 MVAr and 59 MVAr were suggested for the years 2019 and 2023 respectively. The costs of these were calculated with the fee specified by Vattenfall to SEK 820,000 and SEK 1,187,000 respectively. Calculations with the applicable fee yielded that the yearly cost of possible over-input could amount to a maximum of SEK 76,000 with a 95 % probability, using the corrected standard deviation of the input without capacitor production of reactive power for the years 2015 and 2016. Optimal capacitor bank operations were calculated for the years 2015 and 2016 by adding the production of reactive power from existing capacitor banks which yielded the minimum absolute reactive power. Depending on how often the capacitors were operated different results were obtained. An investigation of power quality disturbances due to capacitor bank operations is recommended to achieve an understanding of the conditions for optimal capacitor bank operations. It was not deemed economically justifiable to install more advanced compensation technologies such as static VAr compensators since variable reactors are able to compensate daily and seasonal variations in reactive power. The production of reactive power in cables is the largest on the 145 kV level and will increase in the future on this level. It is therefore likely here compensation technologies such as reactors should be installed first. To be able to make as good decisions as possible concerning the reactive power, it is recommended to as soon as possible commence a working method as if the fee system had already come into effect; thus increasing the amount of representative data.
|
9 |
Implementation of Intelligent Maximum Power Point Tracking Control for Renewable Power Generation SystemsChang, Chih-Kai 19 June 2012 (has links)
This thesis discusses the modeling of a micro-grid with photovoltaic (PV)-wind-fuel cell (FC) hybrid energy system and its operations. The system consists of the PV power, wind power, FC power, static var compensator (SVC) and an intelligent power controller. Wind and PV are primary power sources of the system, and an FC-electrolyzer combination is used as a backup and a long-term storage system. A simulation model for the micro-grid control of hybrid energy system has been developed using MATLAB/Simulink. A SVC was used to supply reactive power and regulate the voltage of the hybrid system. To achieve a fast and stable response for the real power control, the intelligent controller consists of a Radial Basis Function Network-Sliding Mode Control (RBFNSM) and a General Regression Neural Network (GRNN) for maximum power point tracking (MPPT). The pitch angle of wind turbine is controlled by RBFNSM, and the PV system uses GRNN, where the output signal is used to control the DC/DC boost converters to achieve the MPPT.
|
10 |
Identification of Damping Contribution from Power System ControllersBanejad, Mahdi January 2004 (has links)
With the growth of power system interconnections, the economic drivers encourage the electric companies to load the transmission lines near their limits, therefore it is critical to know those limits well. One important limiting issue is the damping of inter-area oscillation (IAO) between groups of synchronous machines. In this Ph.D. thesis, the contribution of power system components such as load and static var compensators (SVC) that affect the IAO of the power system, are analysed. The original contributions of this thesis are as follows: 1-Identification of eigenvalues and mode shapes of the IAO: In the first contribution of this thesis, the eigenvalues of the IAO are identified using a correlation based method. Then, the mode shape at each identified resonant frequency is determined to show how the synchronous generators swing against each other at the specific resonant frequencies. 2-Load modelling and load contribution to damping: The first part of this contribution lies in identification of the load model using cross-correlation and autocorrelation functions . The second aspect is the quantification of the load contribution to damping and sensitivity of system eigenvalues with respect to the load. 3- SVC contribution to damping: In this contribution the criteria for SVC controller redesign based on complete testing is developed. Then the effect of the SVC reactive power on the measured power is investigated. All of the contributions of this thesis are validated by simulation on test systems. In addition, there are some specific application of the developed methods to real data to find a.) the mode shape of the Australian electricity network, b.) the contribution of the Brisbane feeder load to damping and c.) the effect of the SVC reactive power of the Blackwall substations on the active power supplying Brisbane.
|
Page generated in 0.0883 seconds