• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sequential Analysis of Quantiles and Probability Distributions by Replicated Simulations

Eickhoff, Mirko January 2007 (has links)
Discrete event simulation is well known to be a powerful approach to investigate behaviour of complex dynamic stochastic systems, especially when the system is analytically not tractable. The estimation of mean values has traditionally been the main goal of simulation output analysis, even though it provides limited information about the analysed system's performance. Because of its complexity, quantile analysis is not as frequently applied, despite its ability to provide much deeper insights into the system of interest. A set of quantiles can be used to approximate a cumulative distribution function, providing fuller information about a given performance characteristic of the simulated system. This thesis employs the distributed computing power of multiple computers by proposing new methods for sequential and automated analysis of quantile-based performance measures of such dynamic systems. These new methods estimate steady state quantiles based on replicating simulations on clusters of workstations as simulation engines. A general contribution to the problem of the length of the initial transient is made by considering steady state in terms of the underlying probability distribution. Our research focuses on sequential and automated methods to guarantee a satisfactory level of confidence of the final results. The correctness of the proposed methods has been exhaustively studied by means of sequential coverage analysis. Quantile estimates are used to investigate underlying probability distributions. We demonstrate that synchronous replications greatly assist this kind of analysis.
2

Metodologia para quantificação e acompanhamento de indicadores-chave de desempenho operacional

Giaquinto, Cláudia Daniela Melo January 2017 (has links)
Indicadores-chave de desempenho (KPIs) exercem um papel de extrema importância na indústria de processos, auxiliando na tomada de decisão. No entanto, para serem representativos precisam ser calculados de forma confiável. O presente trabalho propôs uma metodologia para o cálculo destes KPIs com base em técnicas de detecção do estado estacionário, remoção de ruído, propagação de erros e análise de sensibilidade. Estes KPIs foram apresentados, de acordo com o que consta na literatura, em uma nova ferramenta gráfica de acompanhamento proposta pelos autores, denominada StatSSCandlePlot. O StatSSCandlePlot apresenta os KPIs no padrão candlestick, que é bastante utilizado no mercado de ações, incluindo informações adicionais. O grande diferencial do StatSSCandlePlot é que os indicadores e suas respectivas propriedades exibidas são calculadas a partir de técnicas que englobam o tratamento de dados e análises estatísticas. A metodologia proposta foi aplicada em um estudo de caso de um chuveiro contendo dois princípios de aquecimento, gás e energia elétrica. Para este estudo, foi criado o Índice de Qualidade do Banho (IQB), que é um indicador dependente da temperatura e da vazão de saída, cujos dados foram avaliados em três cenários distintos, o primeiro quando o sistema é submetido a distúrbios na vazão, no segundo ocorre uma queda na temperatura da água fria e no último, o IQB foi avaliado quando o sistema foi submetido a distúrbios na vazão sob uma nova estratégia de controle da planta. A partir do StatSSCandlePlot, foi possível identificar as tendências do indicador nos diferentes cenários, a parcela de cada janela no estado estacionário, os valores a serem considerados do indicador e, de forma complementar, identificar a variável que mais influenciou na variação do indicador, através da análise de sensibilidade. / Key performance indicators (KPIs) play an extremely important role in the process industry, aiding in decision-making. However, to be representative they need to be calculated reliably. The present work proposed a methodology for the calculation of these KPIs based on steady state detection, noise removal, error propagation and sensitivity analysis techniques. These KPIs were presented, as far as it is known, in a new graphical KPIs monitoring tool proposed by the authors, called StatSSCandlePlot. StatSSCandlePlot introduces KPIs in the candlestick standard, which is widely used in the stock market, including additional information. The major difference of StatSSCandlePlot is that the indicators and their respective displayed properties are calculated from techniques that encompass data processing and statistical analysis. The proposed methodology was applied in a case study of a shower containing two principles of heating, gas and electric energy. For this study the Bath Quality Index (BQI) was created, which is a temperature and output flow dependent indicator, whose data were evaluated in three different scenarios, the first one when the system was submitted to flow disturbances, in the second one, a decrease in the temperature of the cold water and in the last one, the IQB was evaluated when the system was submitted to disturbances in the flow under a new strategy of control of the plant. From the StatSSCandlePlot, it was possible to identify the trends of the indicator in the different scenarios, the portion of each window in the steady state, the values to be considered in the indicator and, in a complementary way, to identify the variable that most influenced the variation of the indicator, through the sensitivity analysis.
3

Metodologia para quantificação e acompanhamento de indicadores-chave de desempenho operacional

Giaquinto, Cláudia Daniela Melo January 2017 (has links)
Indicadores-chave de desempenho (KPIs) exercem um papel de extrema importância na indústria de processos, auxiliando na tomada de decisão. No entanto, para serem representativos precisam ser calculados de forma confiável. O presente trabalho propôs uma metodologia para o cálculo destes KPIs com base em técnicas de detecção do estado estacionário, remoção de ruído, propagação de erros e análise de sensibilidade. Estes KPIs foram apresentados, de acordo com o que consta na literatura, em uma nova ferramenta gráfica de acompanhamento proposta pelos autores, denominada StatSSCandlePlot. O StatSSCandlePlot apresenta os KPIs no padrão candlestick, que é bastante utilizado no mercado de ações, incluindo informações adicionais. O grande diferencial do StatSSCandlePlot é que os indicadores e suas respectivas propriedades exibidas são calculadas a partir de técnicas que englobam o tratamento de dados e análises estatísticas. A metodologia proposta foi aplicada em um estudo de caso de um chuveiro contendo dois princípios de aquecimento, gás e energia elétrica. Para este estudo, foi criado o Índice de Qualidade do Banho (IQB), que é um indicador dependente da temperatura e da vazão de saída, cujos dados foram avaliados em três cenários distintos, o primeiro quando o sistema é submetido a distúrbios na vazão, no segundo ocorre uma queda na temperatura da água fria e no último, o IQB foi avaliado quando o sistema foi submetido a distúrbios na vazão sob uma nova estratégia de controle da planta. A partir do StatSSCandlePlot, foi possível identificar as tendências do indicador nos diferentes cenários, a parcela de cada janela no estado estacionário, os valores a serem considerados do indicador e, de forma complementar, identificar a variável que mais influenciou na variação do indicador, através da análise de sensibilidade. / Key performance indicators (KPIs) play an extremely important role in the process industry, aiding in decision-making. However, to be representative they need to be calculated reliably. The present work proposed a methodology for the calculation of these KPIs based on steady state detection, noise removal, error propagation and sensitivity analysis techniques. These KPIs were presented, as far as it is known, in a new graphical KPIs monitoring tool proposed by the authors, called StatSSCandlePlot. StatSSCandlePlot introduces KPIs in the candlestick standard, which is widely used in the stock market, including additional information. The major difference of StatSSCandlePlot is that the indicators and their respective displayed properties are calculated from techniques that encompass data processing and statistical analysis. The proposed methodology was applied in a case study of a shower containing two principles of heating, gas and electric energy. For this study the Bath Quality Index (BQI) was created, which is a temperature and output flow dependent indicator, whose data were evaluated in three different scenarios, the first one when the system was submitted to flow disturbances, in the second one, a decrease in the temperature of the cold water and in the last one, the IQB was evaluated when the system was submitted to disturbances in the flow under a new strategy of control of the plant. From the StatSSCandlePlot, it was possible to identify the trends of the indicator in the different scenarios, the portion of each window in the steady state, the values to be considered in the indicator and, in a complementary way, to identify the variable that most influenced the variation of the indicator, through the sensitivity analysis.
4

Metodologia para quantificação e acompanhamento de indicadores-chave de desempenho operacional

Giaquinto, Cláudia Daniela Melo January 2017 (has links)
Indicadores-chave de desempenho (KPIs) exercem um papel de extrema importância na indústria de processos, auxiliando na tomada de decisão. No entanto, para serem representativos precisam ser calculados de forma confiável. O presente trabalho propôs uma metodologia para o cálculo destes KPIs com base em técnicas de detecção do estado estacionário, remoção de ruído, propagação de erros e análise de sensibilidade. Estes KPIs foram apresentados, de acordo com o que consta na literatura, em uma nova ferramenta gráfica de acompanhamento proposta pelos autores, denominada StatSSCandlePlot. O StatSSCandlePlot apresenta os KPIs no padrão candlestick, que é bastante utilizado no mercado de ações, incluindo informações adicionais. O grande diferencial do StatSSCandlePlot é que os indicadores e suas respectivas propriedades exibidas são calculadas a partir de técnicas que englobam o tratamento de dados e análises estatísticas. A metodologia proposta foi aplicada em um estudo de caso de um chuveiro contendo dois princípios de aquecimento, gás e energia elétrica. Para este estudo, foi criado o Índice de Qualidade do Banho (IQB), que é um indicador dependente da temperatura e da vazão de saída, cujos dados foram avaliados em três cenários distintos, o primeiro quando o sistema é submetido a distúrbios na vazão, no segundo ocorre uma queda na temperatura da água fria e no último, o IQB foi avaliado quando o sistema foi submetido a distúrbios na vazão sob uma nova estratégia de controle da planta. A partir do StatSSCandlePlot, foi possível identificar as tendências do indicador nos diferentes cenários, a parcela de cada janela no estado estacionário, os valores a serem considerados do indicador e, de forma complementar, identificar a variável que mais influenciou na variação do indicador, através da análise de sensibilidade. / Key performance indicators (KPIs) play an extremely important role in the process industry, aiding in decision-making. However, to be representative they need to be calculated reliably. The present work proposed a methodology for the calculation of these KPIs based on steady state detection, noise removal, error propagation and sensitivity analysis techniques. These KPIs were presented, as far as it is known, in a new graphical KPIs monitoring tool proposed by the authors, called StatSSCandlePlot. StatSSCandlePlot introduces KPIs in the candlestick standard, which is widely used in the stock market, including additional information. The major difference of StatSSCandlePlot is that the indicators and their respective displayed properties are calculated from techniques that encompass data processing and statistical analysis. The proposed methodology was applied in a case study of a shower containing two principles of heating, gas and electric energy. For this study the Bath Quality Index (BQI) was created, which is a temperature and output flow dependent indicator, whose data were evaluated in three different scenarios, the first one when the system was submitted to flow disturbances, in the second one, a decrease in the temperature of the cold water and in the last one, the IQB was evaluated when the system was submitted to disturbances in the flow under a new strategy of control of the plant. From the StatSSCandlePlot, it was possible to identify the trends of the indicator in the different scenarios, the portion of each window in the steady state, the values to be considered in the indicator and, in a complementary way, to identify the variable that most influenced the variation of the indicator, through the sensitivity analysis.
5

Real-time optimiztion with persistent parameter adaptation using online parameter estimation. / Otimização em tempo real com atualização persistente de parâmetros usando estimadores de parâmetro em tempo real.

Matias, José Otávio Assumpção 18 September 2018 (has links)
In standard Real-time Optimization (RTO) implementations, the plant needs to be suciently steady in order to update the RTO model parameters reliably. However, this condition is seldom found in practice. Moreover, because the RTO model is only updated when the plant enters a stationary condition, the optimizer is likely to be out of phase with highly perturbed plants. The main contribution of the thesis is the proposal of an alternative RTO approach, called Real-time Optimization with Persistent Adaptation (ROPA), which integrates on-line parameter estimation in the optimization cycle, avoiding the steady-state (SS) detection step. Instead of predicting the SS, the online estimator keeps the model up-to-date with the plant and allows running the economic optimization at any time, even instants after implementing the current RTO decisions. ROPA provides an intermediary solution between static and dynamic optimization schemes. While it approximates the optimal trajectory, ROPA enables the use of well-established static RTO commercial solutions. Furthermore, the new approach is the key for decoupling the model estimation problem in order to achieve plant-wide optimization. Another contribution of the thesis is to provide several case studies in which ROPA is tested and compared with the standard RTO implementation: a Williams-Otto reactor, a Fluid Catalyst Cracking unit and a separation-reaction system. The idea is to illustrate ROPA convergence properties and how the plant-wide optimum is achieved by asynchronously updating the global plant model. The results show that ROPA is able to track the stationary (plant-wide) optimum. In addition, they conrm that the renement of the prediction capacity, by decreasing the time between two sequential optimization, enhances the disturbance detection of the optimization cycle and leads to a better economic performance. / Na implementação padrão de otimização em tempo real (RTO, do inglês real-time optimization), a planta deve estar suficientemente estável para que os parâmetros do modelo usado no RTO sejam estimados com precisão. Contudo, esta condição é raramente encontrada na prática. Alám disso, devido ao fato de o modelo usado no RTO ser atualizado somente quando a planta entra em estado estacionário, é provável que o otimizador esteja fora de fase quando implementado em plantas com alta frequência de distúrbios. A principal contribuição desta tese e o desenvolvimento de uma metodologia alternativa de RTO chamada otimização em tempo real com atualização persistente de parâmetros (ROPA, do inglês real-time optimization with persistent adaptation). A nova metodologia integra estimadores em tempo real ao ciclo de otimização, evitando assim a necessidade da etapa de detecção de estado estacionário. Ao invés de identificá-lo, o estimador em tempo real mantém o modelo atualizado com a planta e permite que se execute a otimização econômica em tempos arbitrários, mesmo instantes depois da implementação da decisão ótima calculada anteriormente pelo RTO. ROPA provê uma solução intermediária entre a otimização estática e dinâmica. Ao mesmo tempo que aproxima a trajetória ótima, ela permite o uso de soluções comerciais já estabelecidas de RTO estacionário. Também, a nova metodologia é a chave para o desacoplamento do problema de estimação a fim de se atingir o ótimo global da planta. Uma contribuição adicional da tese é a apresentação de três casos de estudo que testam a ROPA e comparam sua performance à implementação padrão de RTO: um reator Williams-Otto, uma unidade de craqueamento catalítico e um sistema de separação-reação. A ideia principal e ilustrar as propriedades de convergência da nova metodologia e como a atualização assíncrona do modelo global da planta pode ser usada para atingir o ótimo da planta como um todo. Os resultados mostram que a ROPA é capaz de alcançar o ótimo estacionário da planta. Adicionalmente, o refinamento da capacidade de predição através da diminuição do tempo entre duas execuções sequenciais do otimizador melhora a capacidade de detecção de distúrbios do ciclo de otimização assim como a performance econômica.
6

Performance evaluation in post integrated organic Rankine cycle systems : A study on operational systems utilizing low grade heat

Lindqvist, Jakob, Faber, Niklas January 2018 (has links)
Organic Rankine cycles can be integrated with district heating systems and in applications of biogas digestion. Evaluating the performance of the installations by Againity AB in Ronneby and Norrköping, Sweden, is a unique opportunity which can support the establishment of ORC technology in the waste heat recovery market, unveiling its feasibilities and limitations. Operational data gathered from October 2017 until April 2018, provides this thesis with information about the ORC-systems. A method using Coolprop and Matlab has been used to detect steady-state series in the Ronneby installation using moving standard deviation and inclination criteria. By screening the data and selecting these series, analytical equations can be used to determine the performance of the installations and map the linear relationship between variables like pressure and generator power. The largest impact on the system in Ronneby is developed in the condenser. Large coolant volume flow creates large heat sink capacity and higher generator efficiency and power. However, with increasing generator power the condenser pressure decrease. Lower condenser pressure results in a decreased evaporation pressure, which could be maintained if the pump was able to run at higher frequencies. The Plant in Norrköping needs further studies and a review of its sensors. The code in Matlab is a resource to Againity and Linköpings university for future work in performance evaluation. It can be used to detect errors in energy balance, local readings, and picture the machines' performance graphically.

Page generated in 0.119 seconds