Spelling suggestions: "subject:"steel fiber"" "subject:"ateel fiber""
1 |
An investigation into the manufacture and mechanical properties of an Al-steel hybrid MMCDavenport, Rebecca A. January 2018 (has links)
One of the most significant challenges in the composite development field is to find a low-cost manufacturing route capable of producing large volumes of material. This thesis develops and characterises a potential avenue for addressing this, an induction furnace-based process. This process produced a composite of A357 matrix and 10% wt Dramix 3D 80/30 SL steel fibres. The method was evaluated by microstructural analysis and optimum casting parameters were approximated. The fibres were introduced to liquid A357 at 700°C and the composite was brought to a measured temperature of 650°C over not more than 120 seconds before being removed from the furnace and cooled. 10% wt was the ideal reinforcement ratio for this process. Characterising the tensile and compressive strength of the composite material, it reached a peak stress 130% higher than A357 produced under the same conditions, though the peak stresses were still 20% of the literature values for T6 tempered A357. This suggests the need for development of a temper which does not degrade the properties of the composite. 3-point bending tests and some tensile specimens also showed post-failure strength. Under dynamic loading, the composite showed a peak stress in excess of 100 MPa without reaching maximum compression under SHPB loading, and comparable performance to SiC-reinforced MMCs under ballistic testing. The linear decrease in work-hardening with increasing distance from the impact site shows shock and pressure-pulse dissipation properties, attributed to the difference in acoustic impedance between the matrix and the reinforcement.
|
2 |
Short-term and time-dependent flexural behaviour of steel fibre-reinforced reactive powder concreteWarnock, Robyn Ellen, Civil & Environmental, UNSW January 2006 (has links)
This thesis presents an experimental and theoretical study of the material and structural behaviour of a Steel-Fibre reinforced Reactive Powder Concrete (SF-RPC). The experimental program consisted of three phases. Phase 1 involved the development of a design mix for use throughout the remainder of the study. Phase 2 consisted of an in-depth investigation into the material properties of the mix. The final phase of the experimental component was the testing of 16 plain and prestressed SF-RPC beams. Twelve beams were tested under short-term loading to determine their cracking and ultimate moment capacity. The remaining 4 beams were used to investigate the time-dependent flexural behaviour of prestressed SF-RPC slabs. The material properties were measured using a range of short-term tests and included the compressive and flexural behaviour, static chord modulus of elasticity and crack mouth opening. In addition to the short-term tests, investigation into the time-dependent material behaviour was undertaken and included the creep and shrinkage characteristics of the material. The response of the material to various curing conditions was also investigated. The structural behaviour investigated included the short-term flexural moment-curvature response and load-deflection behaviour of beams and slabs along with the crack patterns of both plain and prestressed SF-RPC members. In addition to the investigations into the short-term flexural behaviour, a study into the time-dependent flexural behaviour was also undertaken. There are currently 2 available models for predicting the flexural response of plain and prestressed RPC cross-sections. The analytical phase of this investigation involved an evaluation of these models. Based on the experimental findings and analysis, a modified model was proposed for calculating the short-term flexural behaviour of plain and prestressed SF-RPC beams. The applicability of an age-adjusted effective modulus method for calculating the time-dependent deformations of prestressed SF-RPC slabs under various levels of sustained loads was also evaluated and found to be adequate with minor refinements.
|
3 |
Modelling the behaviour of steel fibre reinforced concrete pavementsElsaigh, Walied Ali Musa Hussein 29 January 2008 (has links)
Steel Fibre Reinforced Concrete (SFRC) is defined as concrete containing randomly oriented discrete steel fibres. The main incentive of adding steel fibres to concrete is to control crack propagation and crack widening after the concrete matrix has cracked. Control of cracking automatically improves the mechanical properties of the composite material (SFRC). The most significant property of SFRC is its post-cracking strength that can impart the ability to absorb large amounts of energy before collapse. Ground slabs are structural applications that could benefit from these advantageous features of the SFRC. Many tests on SFRC ground slabs show that the material can offer distinct advantages compared to plain concrete. In concrete road pavements, SFRC is particularly suitable for increasing load-carrying capacity and fatigue resistance. Not surprisingly, recent years have witnessed acceleration in full-scale tests of SFRC and eventually acceptance of its use in concrete pavements. The use of SFRC in pavements has been slowed down by the absence of a reliable theoretical model to analyse and design these pavements. The analysis of ground slabs has traditionally been based on an elastic analysis assuming un-cracked concrete. Using such a method for SFRC would ignore the post-cracking contribution the SFRC can make to the flexural behaviour of the slab. Despite the growing trend of using methods of analysis based on yield-line theory, which can consider the post-cracking strength of SFRC, these methods were also found to underestimate the load-carrying capacity of SFRC ground slabs. To effectively account for the post-cracking strength of SFRC in the analysis of such slabs requires a method such as the finite element method. In the present work, non-linear methods are used to model the behaviour of SFRC ground slabs subjected to mechanical load. An analytical method is used to determine a tensile stress-strain response for SFRC. In this method, the post-cracking strength of SFRC is taken into account and hence the material model is sensitive to the element size used. The calculated stress-strain response is utilised in finite element analysis of SFRC beams and ground slabs. A smeared crack approach is used to simulate the behaviour of concrete cracking. The analytical method used to determine the tensile stress-strain response, as well as the finite element model, are evaluated using results from experiments on SFRC beams and ground slabs. The analytical results are found to compare well with the observations. The non-linear methods are further used to study the effect of the material model parameters as well as the support stiffness on load-displacement behaviour of SFRC ground slabs. The developed finite element model is shown to be more efficient compared to methods based on the yield-line theory. This is because it produces the load-displacement behaviour of the SFRC ground slab up to a reasonable limit and it provides the tensile stresses as well as the extent of cracking of the slab at every point on the load-displacement response. Using the developed finite element model will allow for considerable material saving since smaller slab thickness can be calculated compared to analytical models currently in use. / Thesis (PhD(Transportation Engineering))--University of Pretoria, 2008. / Civil Engineering / PhD / unrestricted
|
4 |
Investigating the tensile creep of steel fibre reinforced concreteMouton, Christiaan Johannes 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Research in concrete has advanced to such an extent that it is now possible to add steel fibres to concrete in order to improve its durability and ductility. This led to a research group in Europe, FIB, who has provided guidelines to designing Steel Fibre Reinforced Concrete (SFRC) structures. They have found that it is possible for SFRC beams in flexure to be in static equilibrium. However, the time-dependent behaviour of SFRC has not been researched fully and it requires further investigation.
When looking at a concrete beam in flexure there are two main stress zones, the compression zone and the tension zone, of which the tensile zone will be of great interest. This study will report on the investigation of the tensile time-dependent behaviour of SFRC in order to determine how it differs from conventional concrete. The concrete has been designed specifically to exhibit strain-softening behaviour so that the material properties of SFRC could be investigated fully. Factors such as shrinkage and tensile creep of SFRC were of the greatest importance and an experimental test setup was designed in order to test the tensile creep of concrete in a simple and effective manner.
Comparisons were be made between the tensile creep behaviour of conventional concrete and SFRC where emphasis was placed on the difference between SFRC specimens before and after cracking occurred in order to determine the influence of steel fibre pull-out. The addition of steel fibres significantly reduced the shrinkage and tensile creep of concrete when un-cracked. It was however found that the displacement of fibre pull-out completely overshadowed the tensile creep displacements of SFRC. It was necessary to investigate what effect this would have on the deflection of SFRC beams in flexure once cracked.
Viscoelastic behaviour using Maxwell chains were used to model the behaviour of the tensile creep as found during the tests and the parameters of these models were used for further analyses. Finite Element Analyses were done on SFRC beams in flexure in order simulate creep behaviour of up to 30 years in order to determine the difference in deflections at mid-span between un-cracked and pre-cracked beams.
The analyses done showed that the deflections of the pre-cracked SFRC beams surpassed the requirements of the Serviceability Limit States, which should be taken into account when designing SFRC beams. / AFRIKAANSE OPSOMMING: Die navorsing in beton het gevorder tot so ‘n mate dat dit nou al moontlik is om staal vesels by die beton te voeg sodat dit beton se duursaamheid en duktiliteit te verbeter. Dit het gelei tot ‘n groep in Europa, FIB, wat dit moontlik gemaak het om Staal Vesel Beton (SVB) strukture te ontwerp. Hulle het gevind dat dit moontlik is vir SVB balke om in statiese ewewig te wees tydens buiging. Die tyd afhanklike gedrag van SVB is egter nog nie deeglik ondersoek nie en benodig dus verdure ondersoek.
Wanneer ‘n balk in buiging aanskou word kan twee hoof spanningzones identifiseer word, ‘n druk zone en ‘n trek zone, waarvan die trek zone van die grootste belang is. Hierdie studie gaan verslag lewer oor die ondersoek van tyd-afhanklike trekgedrag van SVB om te bepaal hoe dit verskil van konvensionele beton. Die beton was spesifiek ontwerp om vervormingsversagtende gedrag te wat maak dat die materiaal eienskappe van SVB ten volle ondersoek kan word. Faktore soos krimp en die trekkruip van SVB was van die grootste belang en ‘n eksperimentele toets opstelling was ontwerp om die trekkruip van beton op ‘n eenvoudige en effektiewe manier te toets.
Daar was vergelykings getref tussen die trekkruip gedrag van konvensionele beton en SVP en groot klem was geplaas op die verskil tussen SVB monsters voor en na die monsters gekraak het om te bepaal wat die invloed was van staalvesels wat uittrek. Die byvoeging van staalvesels het beduidend die kruip en trekkruip van beton verminder. Daar was alhoewel gevind dat die verplasing van die uittrek van staalvesels heeltemal die trekkruip verplasings van SVB oorskadu het. Dit was nodig om te sien watse effek dit op die verplasing van SVB balke in buiging sal hê.
Viskoelastiese gedrag deur Maxwell kettings was gebruik om die gedrag van trekkruip, soos gevind deur die toetse, te modelleer en die parameters van hierdie modelle was verder gebruik vir analises. Eindige Element Analises was gedoen op SVB balke in buiging om die trekkruip gedrag tot op 30 jaar te simuleer op die verskil tussen die defleksies by midspan tussen ongekraakte en vooraf gekraakte balke te vind.
Die analises het gewys dat die defleksies van die vooraf gekraakte balke nie voldoen het aan die vereistes van die Diensbaarheid limiete nie, wat in ag geneem moet word wanneer SVB balke ontwerp word.
|
5 |
Parameters Affecting the Blast Performance of High Strength Fibre Reinforced Concrete BeamsAlgassem, Omar January 2016 (has links)
A limited number of studies have been conducted in the literature in order to investigate the behaviour of high-strength fibre-reinforced concrete (HSFRC) structural components subjected to blast loads. This study summarizes the results of a research program investigating the potential of using steel fibres to improve the blast performance of high-strength reinforced concrete beams. As part of the experimental investigation twenty beams were tested, including nine beams tested under static four-point bending, and eleven beams tested under dynamic blast loads using a shock-tube. Parameters considered in the study include the effect of concrete strength, steel fibres, fibre content, fibre type, longitudinal reinforcement ratio, and presence of shear reinforcement. All beams in the study have identical dimensions, with a cross-section of 125 x 250 mm and length of 2440 mm. To manufacture the specimens, two beams were cast with normal-strength self-consolidate concrete (SCC), with a specified strength of 50 MPa, while the remaining beams were cast with either plain or fibre-reinforced high-strength concrete having a compressive strength which varied between 95-110 MPa. The steel fibre content in the HSFRC beams varied between 0.5 and 1.0%, by volume of concrete. To investigate the effect of reinforcement ratio (ρ), the beams were reinforced with 2-#4 (American size) bars, 2-15M bars or 2-20M bars (ρ = 1.02%, 1.59%, and 2.41%, respectively). The majority of the plain concrete beams had transverse reinforcement which consisted of 6 mm stirrups arranged at a spacing of 100 mm in the shear spans, while most of the HSFRC beams were built without stirrups. The results indicate that all the parameters in this study (reinforcement ratio, presence of stirrups, concrete strength, steel fibres, fibre content and fibre type) affected the static and blast response of the beams, however, the results demonstrate that steel fibres have a more remarkable effect when compared to the other parameters. The provision of fibres is found to improve the blast performance of the HSC beams by increasing shear capacity, reducing maximum and residual mid-span displacements, reducing blast fragments and increasing damage tolerance.
|
6 |
Blast Performance of Reiforced Concrete Beams Constructed with High-Strength Concrete and High-Strength ReinforcementLi, Yang January 2016 (has links)
This thesis focuses on the dynamic and static behaviour of reinforced concrete beams built using high-strength concrete and high-strength steel reinforcement. As part of this study, a total of 8 high-strength concrete beams, built with and without steel fibres, and reinforced with high strength ASTM A1035 bars are tested under simulated blast loading using the University of Ottawa shock-tube, with an additional 3 companion beams tested under quasi-static loading. The variables considered in this study include: concrete type, fibre content, steel reinforcement ratio and steel reinforcement type. The behaviour of the beams with high-strength steel bars is compared to a companion set of beams reinforced with conventional steel reinforcement. The criteria used to evaluate the blast performance of the beams includes: overall blast capacity, maximum and residual displacements, secondary fragmentation and crack control. The dynamic results show that high strength concrete beams reinforced with high-strength steel are able to resist higher blast loads and reduce displacements when compared to companion beams with conventional steel reinforcement. The results also demonstrate that the addition of steel fibres is effective in controlling crack formation, minimizing secondary blast fragments, reducing displacements and further increasing overall blast capacity. However, the use of high-strength steel and high-strength concrete also shows potential for brittle failures under extreme blast pressures. The static results show that specimens with high-strength steel bars do not increase beam stiffness, but significantly increase peak load carrying capacity when compared to beams with the same ratio of conventional steel reinforcement. The analytical research program aims at predicting the response of the test beams using dynamic inelastic single-degree-of-freedom (SDOF) analysis and includes a sensitivity analysis examining the effect of various modelling parameters on the response predictions. Overall the analytical results demonstrate that SDOF analysis can be used to predict the blast response of beams built with high-strength concrete and steel reinforcement with acceptable accuracy.
|
7 |
Evaluation of a Tramway’s Track Slab in Conventionally Reinforced Concrete or Steel Fibre ConcreteZioris, Stavros, Vranjkovina, Alija January 2015 (has links)
The dominant reinforcement used widely for concrete structures is conventional steel bars (rebars). Nevertheless, the perpetual effort toward evolution and development could not exclude the engineering field, thus new innovative and sophisticated methods are introduced. It is true that, due to lack of extended regulations and standards, the fibre reinforced concrete (FRC) was limited to non-structural applications. However, the last years the situation is changing rapidly and already the applications of FRC include actual structural members. The subject of the current thesis was a tramway’s track slab from “Sparvag City” project in Stockholm. The aim was to evaluate the track slab, in terms of alternative reinforcing ways. In particular three models were examined; model I – conventional reinforcement, model II – steel fibre reinforced concrete (SFRC) and model III – SFRC with conventional reinforcement. The assessment was performed from structural, regulations – compliance, economic and ergonomic perspective. A static linear analysis of the track slab was performed using Abaqus; a finite element analysis (FEA) software. The track slab was subjected only to mechanical loads (selfweight and traffic actions) and thus, the design internal forces were extracted. Thereafter, Eurocode 2 (EN 1992-1-1, 2004) and Swedish standards for FRC structures (SS 812310:2014) were utilized for the reinforcement design of the models. The design was performed in ultimate limit state (ULS), for bending moment and shear resistance, and in serviceability limit state (SLS), for stress limitation and crack control. Model I and III were successfully designed abiding with the respective regulations and requirements, while “only fibres” model was considered valid only for bending moment resistance according to SS 812310:2014. Consequently only models I and III were compared with each other. From the economic comparison it was obtained that model I was less expensive than model III, but on the other hand its construction time was larger. Furthermore model III contained significantly less total rebars’ mass in comparison to model I. This particularity was crucial for the ergonomic assessment. The human factors, that were relevant to the ergonomic assessment, improved the quality of the comparison and the extracted inferences, but also introduced aspects impossible to be put against economic facts as an equal quantity. Thus, there was not a final proposal as the best solution for the thesis subject. / Armeringen av betongkonstruktioner domineras av konventionell armering (armeringsjärn). Med den ständiga strävan mot utveckling och förbättring har inom teknikområdet nya innovativa och avancerade metoder introducerats. Det är på grund av bristen på normer, standarder som fiberarmerad betong begränsats till icke- bärande ändamål. Däremot har situationen förändrats under de senaste åren, redan idag kan man se konstruktioner där fiberarmering används till bärande ändamål. Amnet for den aktuella masterexamen var betongplatta i projektet ”Sparvag City” i Stockholm. Syftet var att utvärdera betongplattan, i form av att undersöka alternativa armeringsmöjligheter. I synnerhet undersöktes tre modeller; modell I- konventionellt armerad platta, modell IIstålfiberarmerad platta och modell III stålfiberarmerad platta kombinerad med konventionell armering. Modellernas möjligheter att uppfylla regelverkens krav undersöktes, men de jämfördes även ur ekonomiskt samt ergonomiskt perspektiv. En statisk linjär analys av betongplattan genomfördes i ett finit element program, Abaqus. Betongplattan utsattes för mekanisk belastning (egenvikt samt trafiklast) för vilken dimensionerande krafter extraherats. Därefter användes Eurocode 2 (EN 1992-1-1, 2004) och den svenska standarden för fiberarmerade betong konstruktioner (SS 812310:2014) för vidare konstruktionsberäkningar. Konstruktionsberäkningarna för betongplattan genomfördes i brottgränstillstånd för böjmoment samt tvärkraft, i brukgränsmotståndet undersöktes betongplattan för spänningsbegränsningar samt sprickkontroll. Konstruktionsberäkningarna kunde genomföras för modell I och III med de existerande föreskrifterna och kraven, men modellen med ”endast fibrer” kunde endast dimensionerna för böjmoment enligt SS 812310:2014. Därför kunde endast modell I och III fortsättningsvis jämföras med varandra. Från den ekonomiska jämförelsen erhölls det att modellen I var billigare än modell III, men att konstruktionstiden var längre. Dessutom var behoven för konventionell armering (armeringsjärn) betydligt mindre för modell III till skillnad från modell I. Modellernas innehåll av konventionell armering var avgörande för den ergonomiska bedömningen. Den mänskliga faktorn, som var relevanta för den ergonomiska bedömningens, gav jämförelsen av modellerna en annan dimension, där de viktiga mänskliga faktorerna
|
8 |
Construction in in-situ cast flat slabs using steel fibre reinforced concreteJarrat, Robert 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Fibre reinforced concrete (FRC) transforms concrete from a characteristically brittle material to one with a post-crack tensile residual capacity. Its application in industry has varied over the past of which the tensile properties have generally been used in the form of crack mitigation. More recently, the introduction of steel fibres has broadened this scope to structural applications in which the resisting tensile stresses that develop within a steel FRC (SFRC) element can be rather significant. This thesis reviews the existing practices and design models associated with SFRC and the suitability of its implementation as the sole form of reinforcement in in-situ cast flat slab systems. As a material SFRC is dependent on a number of factors which include the fibre type and volume, fibre distributions, element size, as well as the support and applied load conditions. Thus, its performance can be considered rather variable in comparison to conventional concrete should the incorrect practices be implemented. In order to adequately define the material characteristics, it is necessary to use test procedures that accurately reflect on the intended structural application. As a result a number of test procedures have been developed. In addition to this, the post-crack material performance is associated with a non-linear behaviour. This attribute makes the design of structural SFRC elements rather difficult. In an attempt to simplify this, existing design models define stress-strain or stress-crack width relations in which assumptions are made regarding the cross-sectional stress distribution at specified load states. This thesis takes on two parts in defining the suitability of SFRC as the sole form of reinforcement in flat slab systems. The first is a theoretical investigation regarding the micro and macro scale material performance of SFRC, the practices that exist in defining the material properties and its application in structural systems (particularly suspended slab systems), and a breakdown of the existing design models applicable to strain softening deflection hardening SFRC materials. The second part is an experimental program in which the fresh state and hardened state material properties of specified SFRC mix designs defined
through flow and beam testing respectively. These properties are then implemented in the
design and construction of full scale flexural and punching shear test slabs in an attempt to
verify the theory applied.
The investigation reveals that the use of SFRC significantly improves the ductility of
concrete systems in the post-crack state through fibre crack bridging. This ductility can result
in deflection hardening of flat slab systems in which the redistribution of stresses increases
the load carrying capacity once cracking has taken place. However, the performance of large
scale test specimens is significantly influenced by the construction practices implemented in
which the material variability increases as a result of non-uniform fibre distributions. The
results indicate that the load prediction models applied have potential to adequately predict
the ultimate failure loads of SFRC flat slab systems but however cannot account for possible
non-uniform fibre distributions which could result in premature failure of the system. / AFRIKAANSE OPSOMMING: Vesel versterkte beton (VVB) verander beton van die kenmerkende uiters bros material na ‘n material met ‘n residuele post-kraak trekkapasiteit. Die toepassing daarvan in die bedryf het
in die verlede gewissel en die trek eienskappe is oor die algemeen gebruik vir kraak
vermindering. Meer onlangs het die bekenstelling van staal vesel hierdie omvang verbreed
na die strukturele toepassings waar trekspannings wat ‘n VVB element kan weerstaan
noemenswaardig kan wees. Hierdie tesis ondersoek bestaande praktyke en ontwerpmodelle
met die oog op staalvesel versterkte beton (SVVB) en die geskiktheid van die
implementering daarvan as die enigste vorm van bekisting in in-situ gegiete plat blad stelsels.
As ‘n materiaal, is SVVB afhanklik van ‘n aantal faktore wat die tipe vesel en volume, vesel
verspreiding, element grootte, sowel as die randvoorwaardes tipe aangewende las insluit. As
gevolg hiervan, kan die gedrag van SVVB, wat korrek geïmplimenteer word, as redelik
varieerbaar beskou word wanneer dit met konvensionele beton vergelyk word. Ten einde die
materiaaleienskappe voldoende te definieer, is dit noodsaaklik dat prosedures wat die
strukturele toepassing akuraat voorstel, getoets word en daarom is ‘n aantal toets prosedures
ontwikkel. Verder het die post-kraak materiaalgedrag ‘n nie-lineêre verband wat
struktuurontwerp met SVVB redelik moeilik maak. Om dit te vereenvoudig, definieer
bestaande ontwerpmodelle spanning-vervorming of spanning-kraakwydte verhoudings
waarin aannames gemaak word ten opsigte van die spanningsverdeling oor ‘n snit, gegewe
sekere lastoestande.
Hierdie studie bestaan uit twee dele wat die geskiktheid van SVVB as die enigste vorm van
bikisting in plat blad stelsels definieer. Die eerste deel bestaan uit ‘n teoretiese ondersoek
wat handel oor die mikro- en makro-skaal materiaalgedrag van SVVB, die praktyke wat
bestaan om die materiaaleienskappe en toepassing in strukturele sisteme (spesifiek opgelegde
blad stelsels) te definieer, en ‘n uiteensetting van die bestaande ontwerpmodelle wat van toepassing is vir defleksie as gevolg van vervormingsversagting wat SVVB material verhard.
Die tweede deel bestaan uit ‘n eksperimentele program waarin die materiaaleienskappe van
gespesifiseerde SVVB meng-ontwerpe in die vars toestand en in die verharde toestand
gedefinieer word deur middel van vloei- en balktoetse onderskeidelik. Hierdie eienskappe
word dan toegepas vir die ontwerp en konstruksie van volskaalse buig- en ponsskuif
toetsblaaie ten einde die modelle en teorie wat toegepas is, te bevestig.
Die ondersoek toon dat die gebruik van SVVB die duktiliteit van beton sisteme
noemenswaardig verbeter in die post-kraak toestand deur kraak oorbrugging. Hierdie
duktiliteit kan defleksie verharding van plat blad stelsels veroorsaak waarin die herverdeling
van spannings, nadat kraking plaasgevind het, die lasdraende kapasiteit verhoog. Die gedrag
van die grootskaalse toetsmonsters word egter noemenswaardig beïnvloed deur die
konstruksiemetodes wat geïmplementeer word waarin die materialveranderlikheid toeneem as
‘n gevolg van nie-uniforme vesel verdelings. Die resultate dui daarop dat die modelle wat
toegepas is om die laste te voorspel, die potensiaal het om die grens falingslas van SVVB plat
blad stelsel voldoende te voorspel, maar neem nie moontlike nie-uniforme veselverdelings
wat kan lei tot vroeë faling van die stelsel in ag nie.
|
9 |
Development of analytical flexural models for steel fibre-reinforced concrete beams with and without steel barsMbewe, Peter Binali Kamowa 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: There is an increasing demand for the development and use of innovative materials with
reduced cost of construction while offering improved structural properties. Steel fibre
reinforced concrete (SFRC) can be used as a structural material to substitute the conventional
reinforcing bars partially or fully. However, there is little or no codified approach on the
design procedures for SFRC members in the latest guidelines outlined in the draft 2010
Model code.
It is against this background that analytical methods are derived in this study for the
determination of the flexural capacity of strain-softening, deflection-hardening SFRC with
and without steel reinforcing bars. Models used for the determination of the flexural capacity
of SFRC rectangular sections are based on equivalent stress blocks for both compression and
tensile stresses. These are derived from an elastic-perfect plastic model for compression and
either an elastic-constant post-peak response or Rilem’s multi-linear model for tension, in
which strain compatibility and force equilibrium theories are used. By employing the
equivalent stress blocks for both tensile and compressive stress states, parameters are defined
by converting the actual stress-strain distribution to an equivalent stress block, depending on
the ratio of yield (or cracking) strain and post-yield (post-cracking) strains. Due to the
simplicity of a drop-down tensile model and a bilinear compression model, these material
models are used for the subsequent derivation of the flexural models for both SFRC with and
without steel reinforcing bars.
An experimental program is designed and executed for model verification. This includes
material characterisation experiments for the determination of material model input
parameters, and main beam flexural experiments for the determination of the beam bending
capacity. An indirect tensile test is used for the characterisation of the tensile behaviour while
a four-point bending test is used for beam bending behaviour.
Both flexural models for SFRC with and without reinforcing bars have been verified to fairly
predict the flexural capacity of the beams. However, the flexural model for SFRC with steel
bars offers some challenges as to whether the synergetic effect of using both steel bars and
steel fibres should be incorporated at the low fibre volumes as used in the verification
exercise. Furthermore, the use of indirect methods to characterise tensile behaviour added
some uncertainties in the material model parameters and hence may have affected the
predictability of the model. More research on the verification of the models is required to
enable the use of a wider concrete strength spectrum for the verification and possible
modification of the models. Studies on the model uncertainty may also help determine the
reliable safety factor for the use of the model in predicting design strength of beam sections at
a prescribed reliability index. / AFRIKAANSE OPSOMMING: Daar is ‘n groeiende aanvraag na die ontwikkeling en gebruik van innoverende materiale met
verminderde konstruksiekoste maar verbeterde strukturele eienskappe. Staalvesel-gewapende
beton (SVGB) kan gebruik word as strukturele materiaal om die konvensionele
wapeningstawe gedeeltelik of ten volle te vervang. Daar is egter min of geen gekodifiseerde
benaderings tot die ontwerpprosedures vir SVGB-dele in die nuutste riglyne uitgestippel in
die konsepweergawe van die 2010 Modelkode nie.
Dit is teen hierdie agtergrond dat in hierdie studie analitiese metodes afgelei is vir die
bepaling van die buigkapasiteit van spanning-versagtende, defleksie-verhardende SVGB met
en sonder staalbewapeningstawe. Modelle wat gebruik is vir die bepaling van die
buigkapasiteit van SVGB reghoekige snitte is gebaseer op ekwivalente spanningsblokke vir
beide druk- en trekspannings. Hierdie is afgelei van ‘n elasties-perfekte plastiese model vir
druk en óf ‘n elasties-konstante post-piek respons óf Rilem se multi-lineêre model vir
spanning, waarin teorieë vir drukkapasiteit en krag-ewewig gebruik is. Deur die ekwivalente
spanningsblokke vir beide trek- en drukspanningstoestande te implementeer, is parameters
bepaal deur die werklike verspreiding van spanningsdruk om te wissel na ‘n ekwivalente
spanningsblok, afhangend van die verhouding van swig- (of kraak-)spanning en post-swig
(post-kraak) spannings. Te wyte aan die eenvoud van ‘n aftrek trekmodel en ‘n bilineêre
kompressiemodel, is hierdie materiaalmodelle gebruik vir die daaropvolgende afleiding van
die buigingsmodelle vir beide SVGB met en sonder staalbewapeningstawe. ‘n Eksperimentele program vir modelkontrolering is ontwerp en uitgevoer. Dit sluit eksperimente in vir materiaalbeskrywing, om invoerparameters van materiaalmodelle te
bepaal, asook eksperimente vir hoofbalkbuigings, om balkbuigingskapasiteit te bepaal. ‘n
Indirekte trektoets is gebruik vir die beskrywing van die trekgedrag, terwyl ‘n vierpuntbuigingstoets
gebruik is vir balkbuiggedrag.
Dit is bewys dat beide buigingsmodelle vir SVGB met en sonder staalbewapeningstawe die
buigingskapasiteit van die balke redelik akkuraat kan voorspel. Nietemin, bied die
buigingsmodel vir SVGB met staalbewapeningstawe sekere uitdagings: die vraag ontstaan
rondom die insluiting van die sinergetiese effek van die gebruik van beide staalstawe en
staalvesels met die lae veselvolumes soos gebruik in die kontroleringsoefening. Verder het
die gebruik van indirekte metodes om die buigingsgedrag te bepaal, onsekerhede gevoeg by
die materiaalmodelparameters en dit mag dus as sulks die voorspelbaarheid van die model
beïnvloed. Meer navorsing moet uitgevoer word oor die kontrolering van die modelle sodat
‘n wyer spektrum van betonsterkte gebruik kan word vir die verifikasie en moontlike
aanpassing van die modelle. Navorsing oor die wisselvalligheid van die modelle mag ook
help om die betroubare veiligheidsfaktor te bepaal vir die model se gebruik in die berekening
van ontwerpkrag van balkdele teen ‘n voorgeskrewe betroubaarheidsindeks.
|
10 |
Avaliação das propriedades de concretos reforçados com fibras de aço para utilização em pisos industriais / Evaluation of steel fiber reinforced concrete for industrial floorsGuimarães, Diego January 2015 (has links)
Os pisos industriais são elementos que estão presentes em muitas obras da construção civil. Devido a isso, estudos devem ser procedidos para melhorar seu desempenho. Concretos reforçados com fibras metálicas são alternativas para a produção de pisos, pois as fibras melhoram o comportamento do concreto transformando-o de um material quase-frágil em um material com comportamento pseudo-ductil. Diversas manifestações patológicas vêm sendo constatadas em pisos, como fissuras, e o emprego destas fibras visa minimizar estas deficiências. Assim, nesta pesquisa, foi estudado o traço 1: 2,5: 3,1 a/c 0,55, com adição de três teores diferentes de fibras: 0,25%; 0,35% e 0,60%, em volume de concreto, e dois fatores de forma FF/65 e FF/80. Para avaliar características do concreto foram realizados ensaios de flexão a quatro pontos, flexão a três pontos, módulo de elasticidade e resistência à compressão axial. A partir destes ensaios pode-se verificar o comportamento de cada teor em relação: à tenacidade, às variações na carga de pico, à capacidade de manter a resistência residual pós-ruptura e à abertura da fissura. Também foram avaliadas as diferenças do comportamento em relação à moldagem dos CPs, devido ao fato que foram moldados CPs cilíndricos convencionais e extraídos de blocos. Verificou-se que a inserção de fibras não causa significativas alterações na resistência à compressão axial e também no módulo de elasticidade. Quando a análise é realizada para o tipo de moldagem verificou-se que os CPs cilíndricos convencionais obtiveram melhor desempenho, em comparação aos extraídos. Na avaliação dos ensaios de flexão observou-se que o teor exerce maior influência no desempenho se comparado com a mudança no fator de forma. padrão de fissuração nas vigas foi o esperado para teores abaixo do volume crítico. Verificou-se uma menor variabilidade dos resultados de flexão a três pontos em relação ao ensaio de flexão a quatro pontos. Constatou-se um aumento da energia de fratura com o aumento do teor de fibras. Com as propriedades estimadas experimentalmente foi dimensionado um piso industrial para uma aplicação específica, ressaltando que o teor de 0,35% seria a melhor alternativa. Concluindo que nesta pesquisa a variação no FF não causou impactos no desempenho final ressaltando que o teor de 0,35% seria a melhor alternativa, para o dimensionamento. / Industrial floors are elements that are present in many works of construction. Because of this, studies should be proceeded to improve their performance. Concrete reinforced with steel fibers are alternatives for the production of floors, because the fibers improve the concrete behavior making it a quasi-brittle material in a material with pseudo-ductile behavior. Several pathological manifestations have been observed in floors, such as cracks, and the use of these fibers is to minimize these deficiencies. Thus, in this research, we studied the trace 1: 2.5: 3.1 a / c 0.55, with addition of three different levels of fiber: 0.25%; 0.35% and 0.60% in volume of concrete, and two form factors FF / 65 and FF / 80. To evaluate specific characteristics of flexure tests were conducted at four points, the three points bending, modulus of elasticity and resistance to axial compression. From these tests can verify the behavior of each content regarding: the tenacity, to changes in peak load, the ability to maintain the post-break residual strength and the opening of the crack. They were also evaluated behavioral differences in relation to the molding of CPs due to the fact that were shaped conventional cylindrical CPs and extracted blocks. It was found that the fiber insertion does not cause significant changes in compressive strength and also the modulus of elasticity. When the analysis is performed for the type of molding it found that conventional cylindrical CPs performed better in comparison to extracted. In the evaluation of bending tests it was observed that the content has the most influence on performance compared with the change in form factor. The pattern of cracks on the beams was expected to levels below the critical volume. There was less variation of bending results at three points over the flexure test at four points. It was found an increased fracture energy with increased fiber content. With the properties estimated experimentally has been designed an industrial floor for a specific application, pointing out that the 0.35% level would be the best alternative. Concluding that this research variation in FF caused no impact on final performance pointing out that the 0.35% level would be the best alternative for the design.
|
Page generated in 0.0781 seconds