• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 2
  • Tagged with
  • 22
  • 22
  • 12
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Zeeman-Doppler Imaging of active late-type stars

Kopf, Markus January 2008 (has links)
Stellare Magnetfelder spielen eine wichtige Rolle bei der Entstehung und Entwicklung von Sternen. Leider entziehen sie sich aber, aufgrund ihrer großen Entfernung zur Erde, einer direkten Beobachtung. Dies gilt zumindest für derzeitige und in naher Zukunft zur Verfügung stehende Instrumente. Um aber beispielsweise zu verstehen, ob Magnetfelder durch einen Dynamoprozess generiert werden oder Überbleibsel der Sternentstehung sind, ist es zwingend erforderlich, die Oberflächenstruktur und die zeitliche Entwicklung von stellaren Feldern zu untersuchen. Glücklicherweise haben wir mit der Dopplerverschiebung sowie der Polarisation von Licht Mittel zur Verfügung, um indirekt die Magnetfeldtopologie entfernter Sternen zu rekonstruieren, wenn auch nur die schnell rotierender. Die auf den beiden genannten Effekten basierende Rekonstruktionsmethode ist unter dem Namen Zeeman-Doppler Imaging (ZDI) bekannt. Sie stellt eine leistungsfähige Methode dar, um aus rotationsverbreiterten Stokes Profilen schnell rotierender Sterne Oberflächenkartierungen der Temperatur und Magnetfeldverteilung zu erstellen. Durch das ZDI konnten in den vergangenen Jahren die Magnetfeldverteilungen zahlreicher Sterne rekonstruiert werden. Diese Methode stellt allerdings sehr hohe Anforderungen sowohl an die Instrumentierung als auch an die Rechenleistung und ist deshalb häufig mit zahlreichen Annahmen und Näherungen verbunden. Ziel dieser Arbeit war es, Methoden für ein ZDI zu entwickeln, das darauf ausgelegt ist, zeitaufgelöste spektropolarimetrische Daten von aktiven späten Sternen zu invertieren. Es sollte also insbesondere den komplexen und lokalen Magnetfeldstrukturen dieser Sterne Rechnung getragen werden. Um die Orientierung und Stärke solcher Felder zuverlässig rekonstruieren zu können, sollte die Inversion im Stande sein, alle vier Stokes-Komponenten einzubeziehen. Ferner war vorgesehen auf vollständigen polarisierten Strahlungstransportmodellierungen aufzubauen. Dies ermöglicht eine simultane und selbstkonsistente Temperatur- und Magnetfeld-Inversion, die damit dem komplexen Zusammenspiel zwischen Temperatur und Magnetfeld gerecht wird. Schließlich sollte die Anwendung eines neu zu entwickelnden ZDI Programms auf Stokes I und V Beobachtungen von II Pegasi (kurz: II Peg) erste Magnefeldkarten dieses sehr aktiven Sterns liefern. Um den hohen Rechenaufwand, der mit der Inversionsmethode einhergeht, besser bewältigen zu können, wurde zunächst eine schnelle Approximationsmethode für den polarisierten Strahlungstransport entwickelt. Sie basiert auf einer Hauptkomponentenanalyse (PCA) sowie auf künstlichen Neuronalen Netzen. Letztere approximieren den funktionalen Zusammenhang zwischen atmosphärischen Parametern und den zugehörigen lokalen Stokes Profilen. Inverse Probleme sind potentiell schlecht gestellt und erfordern in der Regel eine Regularisierung. Der entwickelte Ansatz verwendet eine lokale Entropie, die auf die Besonderheiten bei der Rekonstruktion lokalisierter Magnetfeder eingeht. Ein weiterer neuartiger Ansatz befasst sich mit der Rauschreduktion polarimetrischer Beobachtungsdaten. Er macht sich die Hauptkomponentenanalyse zu Nutze, um mit Hilfe einer Vielzahl beobachteter Spektrallinien, einzelne Linien mit drastisch vergrößertem Signal-zu-Rausch-Verhältnis wieder zu geben. Diese Methode hat gegenüber anderen Multi-Spektrallinien-Verfahren den Vorteil, nach wie vor eine Inversion auf der Basis einzelner Spektrallinien durchführen zu können. Schließlich wurde das Inversionsprogramm iMap entwickelt, das die zuvor genannten Methoden implementiert. Detaillierte Testrechnungen demonstrieren die Funktionsfähigkeit und Genauigkeit der schnellen Synthese-Methode und weisen einen Zeitgewinn von nahezu drei Größenordnungen gegenüber der konventionellen Strahlungstransportberechnung auf. Desweiteren untersuchen wir den Einfluss der verschiedenen Stokes Komponenten (IV bzw. IVQU) auf die Zuverlässigkeit, ein bekanntes Magnetfeld zu rekonstruieren. Damit belegen wir die Zuverlässigkeit unseres Inversionsprogrammes und zeigen darüber hinaus auch Einschränkungen von Magnetfeldinversionen im allgemeinen auf. Eine erste Inversion von Stokes I und V Profilen von II Peg liefert zum ersten Mal für diesen Stern simultan Temperatur- und Magnetfeldverteilungen. / Stellar magnetic fields, as a crucial component of star formation and evolution, evade direct observation at least with current and near future instruments. However investigating whether magnetic fields are generated by a dynamo process or represent relics from the formation process, or whether they show a behavior similar to the sun or something very different, it is essential to investigate their structure and temporal evolution. Fortunately nature provides us with the possibility to indirectly observe surface topologies on distant stars by means of Doppler shift and polarization of light, though not without its challenges. Based on the mentioned effects, the so called Zeeman-Doppler Imaging technique is a powerful method to retrieve magnetic fields from rapid rotating stars based on measurements of spectropolarimetric observations in terms of Stokes profiles. In recent years, a large number of stellar magnetic field distributions could be reconstructed by Zeeman-Doppler Imaging (ZDI). However, the implementation of this method often relies on many approximations because, as an inversion method, it entails enormous computational requirements. The aim of this thesis is to develop methods for a ZDI, designed to invert time-resolved spectropolarimetric data of active late type stars, and to account for the expected complex and small scale magnetic fields on these stars. In order to reliably reconstruct the detailed field orientation and strength, the inversion method is employed to be able to use of all four Stokes components. Furthermore it is based on fully polarized radiative transfer calculations to account for the intricate interplay between temperature and magnetic field. Finally, the application of a newly developed ZDI code to Stokes I and V observations of II Pegasi (short: II Peg) was supposed to deliver the first magnetic surface maps for this highly active star. To accomplish the high computational burden of a radiative transfer based ZDI, we developed a novel approximation method to speed up the inversion process. It is based on Principal Component Analysis and Artificial Neural Networks. The latter approximate the functional mapping between atmospheric parameters and the corresponding local Stokes profiles. Inverse problems, as we are dealing with, are potentially ill-posed and require a regularization method. We propose a new regularization scheme, which implements a local entropy function that accounts for the peculiarities of the reconstruction of localized magnetic fields. To deal with the relatively large noise that is always present in polarimetric data, we developed a multi-line denoising technique based on Principal Component Analysis. In contrast to other multi-line techniques that extract from a large number of spectral lines a sort of mean profile, this method allows to extract individual spectral lines and thus allows for an inversion on the basis of specific lines. All these methods are incorporated in our newly developed ZDI code iMap, which is based on a conjugated gradient method. An in depth validation of our new synthesis method demonstrates the reliability and accuracy of this approach as well as a gain in computation time by almost three orders of magnitude relative to the conventional radiative transfer calculations. We investigated the influence of the different Stokes components (IV / IVQU) on the ability to reconstruct a known synthetic field configuration. In doing so we validate the capability of our inversion code, and we also assess limitations of magnetic field inversions in general. In a first application to II Peg, a K2 IV subgiant, we derived temperature and magnetic field surface distributions from spectropolarimetric data obtained in 2004 and 2007. It gives for the first time simultaneously the temporal evolution of the surface temperature and magnetic field distribution on II Peg.
12

Robotic telescopes & Doppler imaging : measuring differential rotation on long-period active stars / Robotic telescopes & Doppler imaging : measuring differential rotation on long-period active stars

Weber, Michael January 2004 (has links)
Auf der Sonne sind viele Phänomene zu sehen die mit der solaren magnetischen Aktivität zusammenhängen. Das dafür zuständige Magnetfeld wird durch einen Dynamo erzeugt, der sich vermutlich am Boden der Konvektionszone in der sogenannten Tachocline befindet. Angetrieben wird der Dynamo teils von der differenziellen Rotation, teils von den magnetischen Turbulenzen in der Konvektionszone. Die differentielle Rotation kann an der Sonnenoberfläche durch beobachten der Sonnenfleckbewegungen gemessen werden.<br>Um einen größeren Parameterraum zum Testen von Dynamotheorien zu erhalten, kann man diese Messungen auch auf andere Sterne ausdehnen. Das primäre Problem dabei ist, dass die Oberflächen von Sternen nicht direkt beobachtet werden können. Indirekt kann man dies jedoch mit Hilfe der Doppler-imaging Methode erreichen, die die Doppler-Verbreitung der Spektrallinien von schnell rotierenden Sternen benützt. Um jedoch ein Bild der Sternoberfläche zu erhalten, bedarf es vieler hochaufgelöster spektroskopischer Beobachtungen, die gleichmäßig über eine Sternrotation verteilt sein müssen. Für Sterne mit langen Rotationsperioden sind diese Beobachtungen nur schwierig durchzuführen. Das neue robotische Observatorium STELLA adressiert dieses Problem und bietet eine auf Dopplerimaging abgestimmte Ablaufplanung der Beobachtungen an. Dies wird solche Beobachtungen nicht nur leichter durchführbar machen, sondern auch effektiver gestalten.<br>Als Vorschau welche Ergebnisse mit STELLA erwartet werden können dient eine Studie an sieben Sternen die allesamt eine lange (zwischen sieben und 25 Tagen) Rotationsperiode haben. Alle Sterne zeigen differentielle Rotation, allerdings sind die Messfehler aufgrund der nicht zufriedenstellenden Datenqualität von gleicher Größenordnung wie die Ergebnisse, ein Problem das bei STELLA nicht auftreten wird. Um die Konsistenz der Ergebnisse zu prüfen wurde wenn möglich sowohl eine Kreuzkorrelationsanalyse als auch die sheared-image Methode angewandt. Vier von diesen sieben Sternen weisen eine differentielle Rotation in umgekehrter Richtung auf als auf der Sonne zu sehen ist. Die restlichen drei Sterne weisen schwache, aber in der Richtung sonnenähnliche differentielle Rotation auf.<br>Abschließend werden diese neuen Messungen mit bereits publizierten Werten kombiniert, und die so erhaltenen Daten auf Korrelationen zwischen differentieller Rotation, Rotationsperiode, Evolutionsstaus, Spektraltyp und Vorhandensein eines Doppelsterns überprüft. Alle Sterne zusammen zeigen eine signifikante Korrelation zwischen dem Betrag der differenziellen Rotation und der Rotationsperiode. Unterscheidet man zwischen den Richtungen der differentiellen Rotation, so bleibt nur eine Korrelation der Sterne mit antisolarem Verhalten. Darüberhinaus zeigt sich auch, dass Doppelsterne schwächer differentiell rotieren. / The sun shows a wide variety of magnetic-activity related phenomena. The magnetic field responsible for this is generated by a dynamo process which is believed to operate in the tachocline, which is located at the bottom of the convection zone. This dynamo is driven in part by differential rotation and in part by magnetic turbulences in the convection zone. The surface differential rotation, one key ingredient of dynamo theory, can be measured by tracing sunspot positions.<br>To extend the parameter space for dynamo theories, one can extend these measurements to other stars than the sun. The primary obstacle in this endeavor is the lack of resolved surface images on other stars. This can be overcome by the Doppler imaging technique, which uses the rotation-induced Doppler-broadening of spectral lines to compute the surface distribution of a physical parameter like temperature. To obtain the surface image of a star, high-resolution spectroscopic observations, evenly distributed over one stellar rotation period are needed. This turns out to be quite complicated for long period stars. The upcoming robotic observatory STELLA addresses this problem with a dedicated scheduling routine, which is tailored for Doppler imaging targets. This will make observations for Doppler imaging not only easier, but also more efficient.<br>As a preview of what can be done with STELLA, we present results of a Doppler imaging study of seven stars, all of which show evidence for differential rotation, but unfortunately the errors are of the same order of magnitude as the measurements due to unsatisfactory data quality, something that will not happen on STELLA. Both, cross-correlation analysis and the sheared image technique where used to double check the results if possible. For four of these stars, weak anti-solar differential rotation was found in a sense that the pole rotates faster than the equator, for the other three stars weak differential rotation in the same direction as on the sun was found.<br>Finally, these new measurements along with other published measurements of differential rotation using Doppler imaging, were analyzed for correlations with stellar evolution, binarity, and rotation period. The total sample of stars show a significant correlation with rotation period, but if separated into antisolar and solar type behavior, only the subsample showing anti-solar differential rotation shows this correlation. Additionally, there is evidence for binary stars showing less differential rotation as single stars, as is suggested by theory. All other parameter combinations fail to deliver any results due to the still small sample of stars available.
13

Recherche de planètes habitables autour de naines M / Search for Earth-like planets in the habitable zone of M-dwarfs

Astudillo-Defru, Nicola 27 March 2015 (has links)
Depuis la première détection d'une planète extrasolaire autour d'une étoile de type solaire par Mayor et Queloz (1995), plus de 1500 planètes ont été découverts. Actuellement il existe un énorme intérêt à découvrir et caractériser des planètes semblables à la Terre, en particulier celles situées dans la zone habitable de leur étoile hôte (définie comme la distance à l'étoile hôte où la température de la planète permet l'existence d'eau liquide à la surface). La détection de planètes de type terrestre, et la recherche de biomarqueurs dans leurs atmosphères sont parmi les principaux objectifs de l'astronomie du vingt et unième siècle. La méthode des vitesses radiales (VR), consistant à mesurer le mouvement réflexe de l'étoile induit par des planètes en orbite, est une remarquable technique pour atteindre cet objectif.Pour atteindre les précisions nécessaire à la detection de telles planètes il est absolument nécessaire de concevoir des spectrographes extrêmement stables, d'avoir une très bonne compréhension de l'activité stellaire (qui peut mimer l'effet d'une planète), d'effectuer un traitement soigneux de l'atmosphère terrestre (laquelle inévitablement laisse des empreintes dans les spectres acquis depuis le sol), et de disposer d'une puissante technique pour extraire, à partir des spectres, autant d'information Doppler que possible. La recherche de planètes orbitant autour des étoiles de très faible masse, plutôt qu'autour des étoiles de type solaire, permet d'aborder dès maintenant la détection de planètes de faible masse dans la zone habitable. En effet, en gardant tout les autres paramètres égaux, le mouvement réflexe (et donc l'amplitude de la variation VR) sera plus grande si l'étoile centrale est de très faible masse. De plus les naines M ont une plus faible luminosité que les étoiles de type solaire, il en resulte des périodes orbitales courtes des planètes dans la zone habitable (~50 jours pour les naines M contre ~360 jours pour des étoiles de type solaire), entraînant à nouveau en une plus grande amplitude des VR. Une précision de ~1 m/s en VR permet la détection d'une planète dans la zone habitable d'une naine M, alors que ~0.1 m/s sont nécessaire dans le cas d'une étoile de type solaire.Cette thèse vise à optimiser l'extraction de VR des spectres des naines M à haute résolution acquis avec le spectrographe HARPS (avec une possibilité d'applications futures sur d'autres instruments comme SOPHIE, HARPS-N et le prochain spectrographe infrarouge SPIRou - prochainement mis en service au CFHT). Les effets de l'activité stellaire des naines M seront également analysées, dans le contexte de la technique des VR. Divers traceurs d'activité stellaire sont utilisés pour rejeter des fausses détections ou pour étudier les relations entre l'activité magnétique et la rotation. Dans cette thèse (Chap. 3) je calibre pour la première fois le flux dans les raies H et K du Calcium en fonction de la luminosité bolométrique et je détermine la relation entre cet estimateur R'HK et la période de rotation des naines M. Dans le chapitre 4 je décris l'implémentation d'une méthode d'extraction de VR par une minimisation du Chi-deux entre un template spectral et les spectres observés. Je démontre que cette méthode est plus précise que celle classiquement utilisée. Les raies telluriques qui affectent les mesures VR sont prises en compte dans les procédures d'analyse. Ces méthodes sont testées sur des systèmes avec des candidats planétaires, je discuterais l'analyse de certains de ces systèmes. / Since the first detection of an extrasolar planet orbiting a Sun-like star by Mayor and Queloz (1995), more than 1500 have been discovered. Enormous interest is currently focused on finding and characterising Earth-like planets, in particular those located in the habitable zone of their host star (defined as the distance from the host star where the planet temperature allows liquid water to flow on its surface). Both the detection of Earth-like planets, and the search for biomarkers in their atmospheres are among the main objectives of the twenty-first century's astronomy. The method known as radial velocities (RV), that consists in the measure of the star's reflex motion induced by orbiting planets, is a promising technique to achieve that quest.The main difficulties with the RV technique are the needs of an extremely stable spectrograph, a correct understanding of stellar activity (which can mimic the effect of a planet), a careful treatment of our Earth's atmosphere (which inevitable imprints spectra taken from the ground), and the need to dispose of a powerful algorithm to extract as much Doppler information as possible from the recorded spectra. Search for planets orbiting very low-mass stars (M dwarfs) can more easily reach the goal of detecting low-mass planets in the habitable zone of their parent star, compared to solar-type stars. Indeed, everything else being equal, a lower mass of the host star implies a larger reflex motion, and thus a larger RV amplitude. Moreover, the lower luminosity of M dwarfs compared to Sun-like stars, implies shorter orbital periods from planets in the habitable zone (~50 days against ~360 days, for M dwarfs compared to solar-type stars, respectively), resulting again in a larger RV amplitude. A RV precision of ~1 m/s allows a planet detection in the habitable zone of an M dwarf, whereas ~0.1 m/s is required in the case of a solar-type stars.This thesis aims to optimise the RV extraction from HARPS high-resolution spectra (and to open similar analysis on other instruments like SOPHIE, HARPS-N and the upcoming infrared spectrograph SPIRou -- to be commissioned to the 3.6-m CFH-Telescope). The effects of stellar activity will also be analysed, and contextualised in the RV technique. Stellar activity tracers are used to reject false detections or to study the relationships between the stellar magnetic activity and rotation. In this thesis (Chap.ref{chap:mag_activity}) I calibrate for the first time the ratio between the Ca textrm{small II} Htextrm{small &}K chromospheric lines and the bolometric luminosity for M dwarfs. I determine a relationship between the R^prime_{HK}-index and the rotation period of M dwarfs. In chapter~ref{chap:template_matching} I describe my algorithm to extract RVs through a chi^2-minimisation between a stellar template and the observed spectra. I demonstrate the improved accuracy of this method. Telluric spectral lines also affect the measurements of RV and are taken into account in the analysis procedures. I tested these methods on systems with planetary candidates, and for some systems, I took in charge the Keplerian analysis.
14

Characterization of transiting exoplanets : analyzing the impact of the host star on the planet parameters / Caractérisation d’exoplanètes en transit : analyse de l’impact de l’étoile hôte sur les paramètres de la planète

Bruno, Giovanni 21 October 2015 (has links)
Dans le cadre de ma thèse, j’ai analysé les spectres de neuf étoiles Kepler obtenus avec les relevés de vitesse radiale (VR). Cela a permis la caractérisation de leur compagnons planétaires. J’ai analysé les spectres de 21 autres étoiles CoRoT et Kepler, probablement hôtes de naines M à faible masse. Cela a permis d’'élargir l'échantillon des étoiles à faible masse avec masse et rayon mesurés. J’ai calculé l’indice d’activité chromosphérique de 31 étoiles observées avec SOPHIE/OHP, en aidant l’étude des interactions étoile-planète. J’ai étudié le comportement de SOPHIE à bas signal à bruit (S/B). J’ai déterminé l’intervalle de S/B dans lequel un spectre stellaire est fiable pour la mesure des paramètres stellaires.Dans le cadre du consortium SOPHIE, j’ai suivi l’analyse complète du système Kepler-117. Ce système multi-planétaire montre variations des périodes orbitaux dues aux échanges dynamiques entre les planètes (TTV). Pour déterminer les paramètres du système, un approche spécifique a été développé pour l’ajustement simultané de transits, VR et TTV (Bruno et al. 2015).Finalement, je me suis intéressé à l’activité stellaire dans la photométrie de transit. J’ai impl ́ementé deux logiciels de modélisation de tâches stellaires dans un code MCMC, en ajoutant l’évolution des tâches dans l’un d’eux. J’ai appliqué les logiciels au Soleil, à CoRoT-7 et à CoRoT-2. J’ai amené un étude détaillé de la courbe de lumière de CoRoT-2, et exploré les effets des tâches dans les paramètres du transit (Bruno et al., en prep.). Avec la méthode FF’ (Aigrain et al. 2012), j’ai contribué à l’exploration du lien entre la signature des tâches de CoRoT-7 et dans la photométrie et dans les VR. / During my PhD, I analyzed the spectra of nine Kepler stars obtained by radial velocity (RV) observations. This allowed the characterization of their planetary companions. I analyzed the spectra of twenty-one other CoRoT and Kepler stars, likely orbited by low-mass M dwarfs. This helped widening the sample of low-mass stars with measured mass and radius. I calculated the chromospheric activity indfex of thirty-one stars observed with SOPHIE/OHP, helping the study of star-planet interactions. I studied the behavior of SOPHIE in low signal-to-noise ratio (SNR) regime. I determinhed the SNR range in which a stellar spectrum is reliable for the measure of the stellar parameters.Within the SOPHIE consortium, I followed the complete analysis of the Kepler-117 system. This multi-planetary system presents variations in the planetary orbital periods due to their mutual dynamical interacion (TTVs). To fit the system parameters, a specific fitting approach including TTV modeling was developed. We derived the system parameters by the simultaneous fit of transits, RVs, and TTVs (Bruno et al. 2015).Finally, I addressed the problem of stellar activity in transit photometry. I implemented two starspot modeling codes into an MCMC algorithm, adding spot evolution to oneof them. I applied the codes to the Sun, CoRoT-7, and CoRoT-2. I carried an extensive study on the light curve of CoRoT-2, and explored the effects of the spots on the transit parameters (Bruno et al., in prep.). With the FF’ method (Aigrain et al. 2012), I contributed to explore the connection between the photometric and RV signature of starspots in CoRoT-7.
15

Caractérisation des signaux d'activité stellaire dans le système multiplanétaire Gliese 229

Deslières, Ariane 12 1900 (has links)
Les exoplanètes peuvent être détectées par plusieurs méthodes. De celles-ci, la méthode des Vitesses Radiales (RV) est dite indirecte, car l'on observe le spectre lumineux de l'étoile hôte et non la planète directement. Or, plusieurs facteurs influencent les variations lumineuses d'une étoile hormis la présence d'un compagnon. La photosphère des étoiles comprend des régions plus sombres appelées taches stellaires causées par de forts champs magnétiques qui restreignent le déplacement de l'énergie vers la surface. Lorsque l'étoile tourne, elles se déplacent produisant ainsi des variations dans le spectre de l'étoile similaires à celles induites par les corps l'orbitant. C'est pourquoi la modélisation de l'activité stellaire est essentielle pour la recherche d'exoplanètes. Il existe maints indicateurs d'activité dont la photométrie et les bissectrices et le Full Width at Half Maximum (FWHM) obtenus du profil moyen des raies spectrales. Ils peuvent être modélisés à l'aide d'outils mathématiques comme les Processus Gaussiens (GP). L'étoile GL229 A est une naine rouge située à 5.75 parsecs autour de laquelle orbite la première naine brune, GL229 B, découverte par imagerie directe en 1995. À mi-chemin entre planètes géantes et étoiles naines, ces objets sous-stellaires n'ont pas acquis la masse nécessaire pour déclencher la fusion nucléaire de l'hydrogène lors de leur formation. Le système GL229 fut aussi observé par différents télescopes dotés d'instruments permettant d'obtenir des mesures de RV. Ceci mena, en 2014 et 2020, à la détection de deux exoplanètes, GL229 A b et A c aux masses minimales de 32 et 7 masses terrestres. Ce mémoire présente une réanalyse des RV obtenues avec HARPS, un spectrographe échelle. En modélisant le FWHM avec un GP, il peut être démontré que les signaux précédemment identifiés comme d'origine planétaire correspondent en fait à des signaux d'activité stellaire. / Several methods can detect exoplanets. Of these, the Radial Velocity (RV) method is said to be indirect because the light spectrum of the host star is observed and not the planet directly. However, several factors influence a star's luminous variations apart from a companion's presence. The photosphere of stars contains darker regions called star spots caused by strong magnetic fields that restrict the movement of energy to the surface. When the star rotates, these spots move, producing variations in the star's spectrum similar to those induced by the bodies orbiting it. Hence, stellar modelling activity is essential when searching for exoplanets. Many activity indicators, including photometry and bisectors and Full Width at Half Maximum (FWHM) obtained from the average spectral line profiles, can be modelled using tools such as Gaussian Processes (GP). GL229 A is a red dwarf located at 5.75 parsecs around which orbits a brown dwarf, GL229 B, firstly discovered through direct imaging in 1995. Halfway between giant planets and dwarf stars, these substellar objects did not acquire the mass necessary to trigger nuclear hydrogen fusion during their formation. The GL229 system was also observed by various telescopes equipped with instruments making it possible to obtain RV measurements. This led, in 2014 and 2020, to the detection of two exoplanets, GL229 A b and A c, with minimum masses of 32 and 7 Earth masses. This thesis presents a re-analysis of the RVs obtained from HARPS spectra, an échelle spectrograph, for the Gliese 229 system. By modelling the FWHM with a GP, we show that previously identified planetary signals are not real and result from stellar activity.
16

Transiting exoplanets : characterisation in the presence of stellar activity

Alapini Odunlade, Aude Ekundayo Pauline January 2010 (has links)
The combined observations of a planet’s transits and the radial velocity variations of its host star allow the determination of the planet’s orbital parameters, and most inter- estingly of its radius and mass, and hence its mean density. Observed densities provide important constraints to planet structure and evolution models. The uncertainties on the parameters of large exoplanets mainly arise from those on stellar masses and radii. For small exoplanets, the treatment of stellar variability limits the accuracy on the de- rived parameters. The goal of this PhD thesis was to reduce these sources of uncertainty by developing new techniques for stellar variability filtering and for the determination of stellar temperatures, and by robustly fitting the transits taking into account external constraints on the planet’s host star. To this end, I developed the Iterative Reconstruction Filter (IRF), a new post-detection stellar variability filter. By exploiting the prior knowledge of the planet’s orbital period, it simultaneously estimates the transit signal and the stellar variability signal, using a com- bination of moving average and median filters. The IRF was tested on simulated CoRoT light curves, where it significantly improved the estimate of the transit signal, particu- lary in the case of light curves with strong stellar variability. It was then applied to the light curves of the first seven planets discovered by CoRoT, a space mission designed to search for planetary transits, to obtain refined estimates of their parameters. As the IRF preserves all signal at the planet’s orbital period, t can also be used to search for secondary eclipses and orbital phase variations for the most promising cases. This en- abled the detection of the secondary eclipses of CoRoT-1b and CoRoT-2b in the white (300–1000 nm) CoRoT bandpass, as well as a marginal detection of CoRoT-1b’s orbital phase variations. The wide optical bandpass of CoRoT limits the distinction between thermal emission and reflected light contributions to the secondary eclipse. I developed a method to derive precise stellar relative temperatures using equiv- alent width ratios and applied it to the host stars of the first eight CoRoT planets. For stars with temperature within the calibrated range, the derived temperatures are con- sistent with the literature, but have smaller formal uncertainties. I then used a Markov Chain Monte Carlo technique to explore the correlations between planet parameters derived from transits, and the impact of external constraints (e.g. the spectroscopically derived stellar temperature, which is linked to the stellar density). Globally, this PhD thesis highlights, and in part addresses, the complexity of perform- ing detailed characterisation of transit light curves. Many low amplitude effects must be taken into account: residual stellar activity and systematics, stellar limb darkening, and the interplay of all available constraints on transit fitting. Several promising areas for further improvements and applications were identified. Current and future high precision photometry missions will discover increasing numbers of small planets around relatively active stars, and the IRF is expected to be useful in characterising them.
17

Recherche et caractérisation de planètes géantes autour d'étoiles massives et/ou jeunes de la Séquence Principale : modélisation de l'activité d'étoiles de type solaire et impact sur la détection de planètes de masse terrestre / Searching for and characterizing giant planets around massive and/or young Main-Sequence stars : modeling the activity of Sun-like stars and its impact on Earth-like planet detectability

Borgniet, Simon 23 November 2015 (has links)
La recherche des exoplanètes traverse aujourd'hui une période décisive. D'un côté, notre connaissance des planètes géantes gazeuses s'est considérablement développée, et l'objectif de la recherche est maintenant de caractériser leurs propriétés physiques et de mieux comprendre leurs mécanismes de formation et d'évolution. D'un autre côté, la précision et la stabilité des instruments ont atteint un niveau qui rend techniquement possible la détection de planètes telluriques situées dans la zone habitable de leur étoile. Cependant, les perturbations du signal dues à l'étoile elle-même constituent un obstacle important à cette avancée. Mon travail de thèse se situe à la rencontre de ces problématiques. Il a consisté d'une part en l'analyse de deux relevés de vitesses radiales visant des étoiles relativement exotiques pour la recherche d'exoplanètes: les étoiles naines de type AF massives. Ce travail a donné lieu à la première caractérisation de la population de planètes géantes autour de ces étoiles et a montré que les mécanismes de migration planétaire étaient au moins partiellement inhibés autour de ces étoiles par rapport aux étoiles de type FGKM. Dans un second temps, j'ai conduit les observations et l'analyse des premiers résultats de deux grands relevés de vitesses radiales débutés pendant ma thèse et visant à détecter des planètes géantes en orbite autour d'étoiles jeunes et proches. Ces étoiles jeunes sont les seules sources pour lesquelles une exploration complète des planètes géantes à toutes les séparations devient possible, par combinaison des techniques de vitesses radiales et de l'imagerie. Cette combinaison permettra de tester de manière unique les modèles de formation et d'évolution planétaire. Les résultats provisoires de ces relevés indiquent une absence de planètes géantes à très courte séparation (Jupiters chauds) autour de nos cibles. Un autre résultat intéressant est la découverte d'une binaire spectroscopique eccentrique au centre d'un système planétaire imagé à grande séparation. Pour compléter cette approche observationnelle et mieux évaluer la détectabilité des exoplanètes semblables à la Terre, j'ai étalonné et caractérisé un modèle entièrement paramétré de l'activité d'une étoile semblable au Soleil et de son impact sur les vitesses radiales. Je l'ai dans un premier temps étalonné en comparant ses résultats à ceux obtenus à partir d'observations des zones actives du Soleil, puis je l'ai utilisé pour caractériser l'impact de l'inclinaison de l'étoile sur le signal induit par l'activité. Ce modèle paramétré ouvre de très nombreuses possibilités, étant en effet potentiellement adaptable à des types d'étoiles et d'activité différents. Il permettrait ainsi de caractériser les perturbations en vitesses radiales attendues pour chaque cas testé, et donc à la fois de déterminer quelles étoiles et quels types d'activité sont les plus favorables pour la détection de planètes de masse terrestre dans la zone habitable. En explorant ces trois problématiques en apparence très diverses mais complémentaires, j'y ai retrouvé un motif commun, celui de l'importance des étoiles elles-mêmes et de la physique stellaire pour la recherche d'exoplanètes. / The search for exoplanets has reached a decisive moment. On the one hand, our knowledge of giant gaseous planets has significantly developed, and the aim of the research is now to characterize their physical properties and to better understand the formation and evolution processes. On the other hand, the instrumental precision and stability have reached a level that makes it technically possible to detect telluric planets in the habitable zone of their host star. However, the signal alterations induced by the star itself definitely challenge this breakthrough. My PhD stands at the crossroads of these problems. It consisted first in the analysis of two radial velocity surveys dedicated to stars somewhat exotic to exoplanet searches: the massive AF dwarf stars. This work has led to the first characterization of the giant planet population found around these stars and has showed that the planetary migration mechanisms were at least partially inhibited around these stars compared to FGKM stars. I then made the observations and the first analysis of two radial velocity surveys dedicated to the search for giant planets around young, nearby stars. Young stars are the only sources for which a full exploration of the giant planets at all separations can be reached, through the combination of radial velocities techniques and direct imaging. Such a combination will allow to test uniquely the planetary formation and evolution processes. The first results of these surveys show an absence of giant planets at very short separations (Hot Jupiters) around our targets. Another interesting result is the detection of an eccentric spectroscopic binary at the center of a planetary system imaged at a wide separation. To complete this observational approach and better estimate the detectability of Earth-like planets, I calibrated and characterized a fully parameterized model of the activity pattern of a Sun-like star and its impact on the radial velocities. I first calibrated it by comparing it to the results obtained with observations of the solar active structures, and then characterized the impact of stellar inclination on the activity-induced signal. Such a fully parameterized model is potentially adaptable to different types of stars and of activity and would thus allow to characterize the expected radial velocity jitter for each tested case, and then allow both to determine which types of stars and of activity patterns are the most favorable for detecting Earth-like planets in the habitable zone. While investigating these three seemingly different but complementary topics, I found that they shared a basic feature, namely the importance of the stars themselves and of stellar physics in exoplanet searches.
18

Understanding the brightness variations of Sun-like stars on timescales of stellar rotation

Amazo Gomez, Eliana Maritza 27 October 2020 (has links)
El brillo solar varía en escalas de tiempo de minutos a décadas. En particular, la variabilidad fotométrica observada puede relacionarse directamente con el período de rotación. Nuestro conocimiento de este vínculo permite extrapolaciones desde el Sol a otras estrellas. Incluso después de los exitosos estudios estelares logrados por las misiones Kepler o TESS, todavía hay una falta de información en los registros fotométricos de los períodos de rotación de estrellas similares al Sol. Los perfiles de curvas de luz no periódicas, la amplitud de modulación baja (los generados por la aparición aleatoria de características magnéticas y su rápida evolución, en comparación con la escala de tiempo de rotación) son las principales razones poco confiable estimación de la periodicidad en el Sol y sus análogos estelares. Esto indica que las estrellas con un perfil de brillo solar similar también podrían enfrentar un problema de detectabilidad del período de rotación. Lo que implica que solo una fracción de los sistemas similares a los solares se han analizado adecuadamente. Propongo en esta Tesis que una señal clara y optimizada del período de rotación puede ser determinada de manera confiable a partir del perfil del gradiente en el espectro de potencia (GPS) de las series de tiempo de brillo, también denominadas curvas de luz. El GPS es un método novedoso destinado a determinar los períodos de rotación de estrellas como el Sol (es decir, con un perfil de variabilidad de brillo similar). Adicionalmente, el método nos da valiosa información sobre la relación entre fáculas y manchas, lo que, en consecuencia, podría ayudarnos a interpretar la superficie estelar. Este trabajo se basa en el análisis de series de tiempo fotométricas de alta calidad adquiridas por el telescopio Kepler, mediciones de alta estabilidad y alta precisión de la misión SOHO / VIRGO y modelos detallados de variaciones de brillo solar. El método GPS se propone, se desarrolla y prueba con éxito en esta tesis.
19

Étude de l’influence de l’activité stellaire sur la spectroscopie de transit à basse résolution et des possibilités de mitigation par la haute résolution

Genest, Frédéric 11 1900 (has links)
La spectroscopie de transit est un outil puissant pour la caractérisation de l'atmosphère d'exoplanètes. Plusieurs phénomènes peuvent contaminer un spectre de transmission, dont l'hétérogénéité de la surface de l'étoile hôte due à l'activité stellaire. À basse résolution spectrale, la différence entre le cordon de transit et le reste de la surface y laisse des signatures qui pourraient être attribuées à tort à la planète. Les risques associés incluent des biais sur la mesure du rayon et des abondances atmosphériques de planètes. Afin de trouver une solution à ce problème, cette étude consiste à modéliser en détail des surfaces stellaires et des spectres de transit à basse et à très haute résolution. On cherche d'une part à qualifier l'ampleur du problème à basse résolution et, d'autre part, à déterminer si la haute résolution permet d'isoler la contamination stellaire et ainsi résoudre le problème. La modélisation se concentre sur trois types d'étoiles, entre K hâtive et M tardive. Les modèles confirment l'importance du problème et l'absence de solution évidente à basse résolution, principalement pour les étoiles M. À haute résolution, on parvient à séparer les signaux de la planète et de l'activité stellaire. Cela permet de briser l'ambiguïté à basse résolution, pourvu que la planète ait une variation de vitesse radiale suffisante durant le transit. Ces résultats soulignent la valeur d'un suivi à haute résolution lorsque possible. Même avec le télescope James-Webb, il sera difficile d'avoir totalement confiance en les résultats de caractérisation d'atmosphères utilisant des données à basse résolution. / Transit spectroscopy is a powerful tool for the characterisation of exoplanet atmospheres. There exist multiple sources of contamination for transmission spectra, including stellar activity induced surface heterogeneities on the host star. At low spectral resolution, differences between the transit chord and the rest of the surface leave signatures in the spectra, which could then be wrongly associated with the planet. This can introduce biases in radius and atmospheric abundance measurements of exoplanets. To solve this issue, this study consists in carefully modeling stellar surfaces and transit spectra at low and very high spectral resolution. We seek to, on one hand, understand the importance of the problem at low resolution, and, on the other hand, determine if high resolution allows us to isolate stellar contamination and thus solve this problem. Modeling is focused on three types of stars, from early K to late M. Models confirm the importance of the issue and the absence of an obvious solution at low resolution, especially for M stars. At high resolution, we manage to effectively split the planet and stellar activity signals. This allows us to break the ambiguity from low resolution, provided the planet experiences a sufficient radial velocity variation during transit. These results highlight the strong value of high resolution follow-ups when feasible. Even with the James-Webb space telescope, it will be difficult to fully trust the results of atmospheric abundance retrievals using low resolution data.
20

Caractérisation d'atmosphère d’exoplanètes par spectroscopie de transmission en présence d'hétérogénéités stellaires : impact et modélisation des régions actives occultées

Fournier Tondreau, Marylou 07 1900 (has links)
Les hétérogénéités de surface des étoiles actives, telles que les taches et les facules, peuvent compliquer l'interprétation des spectres de transmission en introduisant des caractéristiques spectrales qui chevauchent celles d'atmosphère d'exoplanètes. Les courbes de lumière de transit d'HAT-P-18\(\,\)b et de WASP-52\(\,\)b, observées avec le mode SOSS de l'instrument NIRISS à bord du JWST, sont déformées par des occultations de taches. Avant le déploiement du JWST, ces régions actives étaient souvent simplement masquées, toutefois ceci peut mener à des mesures incorrectes des paramètres du transit. J'ai adapté et implémenté \(\texttt{spotrod}\), un modèle de transit avec occultation de taches, dans l'outil \(\texttt{Juliet}\) pour inférer conjointement les paramètres du transit et des taches occultées. J'ai ainsi ajusté les courbes de lumière de transit de ces deux Jupiters chaudes et récupéré la position de chaque tache, leur rayon et leur spectre de contraste, c'est-à-dire le rapport du flux de la tache sur le flux stellaire. J'ai contraint la température des taches et leur gravité de surface (pour prendre en compte les effets du champ magnétique local) en ajustant chaque spectre de contraste avec des spectres de modèles stellaires PHOENIX. Cependant, un certain degré de dégénérescence est présent, conduisant à une solution plus probable pour chaque tache, mais aussi à d'autres solutions qui ne peuvent être exclues. Le spectre de transmission d'HAT-P-18\(\,\)b nous a permis de détecter de l'H\(_2\)O (12,5\(\,\sigma\)) avec une abondance sub-solaire de \(\log\) H\(_2\)O \(\approx\) -4,4 \(\pm\) 0,3, des nuages (7,4\(\,\sigma\)) et du CO\(_2\) (7,3\(\,\sigma\)) dans l'atmosphère planétaire ainsi que des régions actives non occultées (5,8\(\,\sigma\)) qui imitent une pente de diffusion Rayleigh. / Surface heterogeneities on active stars, such as starspots and faculae, can complicate the interpretation of transmission spectra and introduce spectral features that overlap those of exoplanetary atmospheres. The transit light curves of HAT-P-18\(\,\)b and WASP-52\(\,\)b, observed in the SOSS mode of the NIRISS instrument aboard the JWST, are deformed by spot-crossings. These active regions were often simply masked before the launch of the JWST; however, this can prevent the correct measure of transit parameters. I adapted and implemented \(\texttt{spotrod}\), a model for transits of spotted stars, into the \(\texttt{Juliet}\) tool to simultaneously infer the transit and occulted starspots parameters. I fitted the transit light curves of these two hot Jupiters and retrieved for each spot its position, radius and spot-to-stellar flux contrast spectrum. I constrained the spots' temperature and surface gravity \(-\) attempting to capture the effects of the local magnetic pressure \(-\) by fitting each contrast spectrum with PHOENIX stellar model spectra. However, some degree of degeneracy is present, leading to a most likely solution for each starspot and other solutions that cannot be excluded. The transmission spectrum of HAT-P-18\(\,\)b enabled us to detect H\(_2\)O (12.5\(\,\sigma\)) with a sub-solar abundance of \(\log\) H\(_2\)O \(\approx\) -4.4 \(\pm\) 0.3, a cloud deck (7.4\(\,\sigma\)) and CO\(_2\) (7.3\(\,\sigma\)) in the planetary atmosphere as well as unocculted active regions (5.8\(\,\sigma\)) which mimic a Rayleigh scattering slope.

Page generated in 0.0816 seconds