• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 14
  • 9
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 88
  • 46
  • 28
  • 18
  • 15
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Multicomponent Cyclization Reactions: A General Approach To Dibenzocyclooctadiene Lignan Natural Product

Gong, Wei January 2012 (has links)
No description available.
42

A New Synthetic Pathway for Diquinane And Angular Triquinane Systems

Kim, Eun Hoo 17 May 2010 (has links)
No description available.
43

Studies of single-site zinc, magnesium and calcium catalyst precursors for ring-opening polymerization of lactides

Phomphrai, Khamphee 15 October 2003 (has links)
No description available.
44

Development of Controlled Ring-Opening Polymerization of  O-Carboxyanhydrides

Zhong, Yongliang 27 October 2020 (has links)
The aim of my Ph.D. thesis is to summarize my research on the development of ring-opening polymerization (ROP) of O-carboxyanhydrides (OCAs) to synthesize functionalized, degradable polyesters. Biodegradable polyesters are promising alternatives to conventional petroleum-based non-degradable polyolefins and they are widely used in everyday applications ranging from clothing and packaging to agriculture and biomedicine. Commercially available polyesters, such as poly(lactic-co-glycolic acid), poly(lactic acid), and polycaprolactone, hydrolyze in physicochemical media. They have been approved by FDA and widely used for medical applications. However, the lack of side-chain functionality in polyesters and in corresponding monomers greatly plagues their utility for applications that demand physicochemical properties such as high stiffness, tensile strength and elasticity. Increasing efforts have been devoted to the introduction of pendant groups along the polymer chain in order to modify and modulate the physicochemical properties of polyesters and thereby to expand their applications. Over the last decade, OCAs have emerged as an alternative class of highly active monomers for polyester polymerization. OCAs are prepared from amino acids and thus have a richer range of side chain functionalities than lactone or lactide. Like lactones, OCAs can undergo ROP to obtain polyesters. Unfortunately, current ROP methods, especially those involving organocatalysts, result in uncontrolled polymerization including epimerization for OCAs bearing electron-withdrawing groups, unpredictable molecular weights (MWs), or slow polymerization kinetics. Based on our recent success of Ni/Ir photoredox catalysis allowing for rapid synthesis of high-MWs polyesters, we further explore new polymerization chemistry to use earth-abundant metal complexes to replace expensive rare-earth metal photocatalysts, and practice the polymerization in moderate and energy-efficient reaction conditions. This thesis introduces novel photoredox and electrochemical earth-abundant metal catalysts that overcome above difficulties in the ROP chemistry of OCAs, and allow for the preparation of stereoregular polyesters bearing abundant side-chain functionalities in a highly controlled manner. Specifically, various highly active metal complexes have been developed for stereoselective ROP of OCAs, either using light or electricity, to synthesize syndiotactic or stereoblock copolymers with different thermal properties. Additionally, simple purification protocols of OCAs have also been initially studied, which potentially paves the way to bulk production of functional monomers. In this thesis, I first describe newly-developed photoredox Co/Zn catalysts to achieve a controlled ROP of enantiopure OCAs under mild reaction conditions (Chapter 2). Such discovery is extended to the combination use of Co catalysts with various Zn/Hf complexes that enable stereoselective controlled ROP of racemic OCAs for the preparation of stereoregular polyesters (Chapter 3). The mechanistic studies of the aforementioned developments lead to the application of such a catalytic system in controlled electrochemical ROP of OCAs (Chapter 4). Such chemistry can also be translated to stereoselectively electrochemical ROP of racemic OCAs to either syndiotactic or stereoblock polyesters, allowing precise control of polyester's tacticity and sequence (Chapter 5). An overview future work has been summarized (Chapter 6). / Doctor of Philosophy / Polyesters are widely used in everyday applications ranging from clothing and packaging to agriculture and biomedicine. Different from conventional unrecyclable plastics, polyesters are usually biocompatible and biodegradable, and can be synthesized from renewable resources. A few commercially available polyesters have been approved by FDA and widely used for medical applications. However, their utility for applications that demand various mechanical and chemical properties is greatly limited by the lack of side-chain functional groups in polyesters and in their monomers—lactones. Increasing efforts have been devoted to the introduction of pendant groups along the polymer chain in order to modify and modulate the desired properties of polyesters and thereby to expand their applications. Over the last decade, O-carboxyanhydrides (OCAs) have emerged as an alternative class of highly active monomers for polyester polymerization. OCAs can be prepared from renewable source amino acids and thus have a richer range of side chain functional groups. Like lactones, OCAs can undergo ring-opening polymerization (ROP). Unfortunately, current ROP methods usually result in uncontrolled polymerization of OCAs including loss of stereoregularity, unpredictable molecular weights, or slow polymerization rate. To address the above-described polymer chemistry and materials challenges, I have been motivated to develop a new polymer chemistry knowledge base when starting my Ph.D. program. I was first involved in the development of a controlled photoredox polymerization of OCAs produces polyesters with various side chain functional groups. By using photoredox Ni/Zn/Ir catalysts, stereoregular high molecular weight polyesters can be synthesized from racemic OCAs in a rapid, controlled manner. However, this catalytic system has to be used at -20 °C despite so successful in preparing stereoblock polyesters. Encouraged by our recent success in this area, I started to work on the discovery of other transition metal complexes such as the Co complexes used in N-carboxyanhydride polymerization. Ultimately, innovative photoredox Co/Zn catalysts has been successfully developed, and applied to our protocol to achieve the controlled ROP of enantiopure OCAs under mild reaction condition (Chapter 2). The Co catalyst can replace both Ni and Ir in aforementioned photoredox system. Meanwhile, the combination of Co catalysts and various Zn/Hf complexes has also been developed to undergo photoredox ROP of racemic OCAs to efficiently produce polyesters with different microstructures (Chapter 3). Although photoredox ROP is an efficient method for synthesizing degradable polyesters, great decrease in photonic flux with the depth of the reaction medium makes it less energy efficient compared to electricity. Therefore, we then extended our protocol to electrochemical reaction, which is one of the most energy-efficient chemical reactions. The newly identified Co/Zn catalytic system can be activated by electric current to mediate rapid electrochemical ROP (eROP) of enantiopure OCAs, allowing for the synthesis of isotactic polyesters in a highly controlled manner (Chapter 4). Additionally, stereoselective eROP of racemic OCAs has been firstly achieved by using various combinations of Co and Zn/Hf complexes (Chapter 5). In summary, my research produces unique and transformative insights into the innovative photoredox and electrochemical ROP mediated by metal catalysts. Given the importance and versatility of biodegradable and biocompatible polyester materials, the chemistry invented by our team can be expected to serve as a new platform for various applications in material and biomedical engineering.
45

Chromium-Catalyzed Homoaldol Equivalent Reaction, Indium-Mediated Cycloisomerization, and Palladium-Catalyzed Cross-Coupling Reaction

Kang, Jun 2011 August 1900 (has links)
The homoaldol reaction is one of the most powerful methods for the construction of C–C bonds as well as 1,4-oxygenated compounds yet this reaction remains in challenging tasks due to the instability of homoenolates which spontaneously cyclize to the cyclopropanolate. A regioselective catalytic homoaldol equivalent reaction of 3-bromo vinyl acetate with aldehydes under Cr(III)-Mn(0) redox condition was developed. This homoaldol equivalent reaction allows access to the 1,4-oxygenated compounds that are not possible by a conventional aldol process. Mild hydrolysis of the vinyl acetate and reduction of the homoaldol adducts generated diols and lactols in high yield (99%). Further manipulation including stereoselective epoxidation and cyclopropanation was achieved in an efficient manner. Furans, found in many natural products and utilized in drug discovery, have been well studied but current synthetic methods toward furans have some limitations in functional group tolerance, substrate scope, and low product yield in many cases. A highly efficient and catalytic cycloisomerization reaction that transforms acetylenic α,β-epoxides to 2,3,5-tri-substituted furans under InCl3 catalysis was developed. This reaction sequence allows access to rapid construction of highly valuable, tri-substituted furan derivatives. Cross-coupling reactions utilizing transition metals and Lewis acids are important synthetic tools for the formation of C–C and C–N bonds and a number of cross-coupling reactions between α-bromo carbonyl compounds and metal reagents such as aryl metals, alkenyl metals, and alkyl metals have been reported. Transition metal-catalyzed cross-coupling reaction for the construction of α-alkynyl carbonyl compounds has reported in a limited case. The first approach to secondary α-alkynyl carbonyl compounds from secondary α-bromo esters and amides with tributyl(phenylethynyl)stannane under palladium-catalyzed cross-coupling reaction conditions was developed. This synthetic method allows access to secondary α-alkynyl carbonyl compounds which are valuable precursors in pharmaceuticals and agricultural applications.
46

Nouveaux phosphinosucres ou phostines : hétérocycles phosphorés polyhydroxylés à activité anticancéreuse / New phosphinosugars or phostines : polyhydroxyled cyclic phosphinates with anticancer activity

Filippini, Damien 14 December 2010 (has links)
Les phosphinosucres appelés aussi « phostines » sont des analogues phosphorés des sucres pyranoses et des C-arylglycosides. L'évaluation biologique de ses composés a révélé une activité anticancéreuse des phosphinosucres sur les cellules de glioblastome multiforme, un cancer particulièrement malin et invasif qui ne possède pas de solution thérapeutique. Dans le but de comprendre les mécanismes d'action des phosphinosucres et la stéréo-dépendance de leur activité biologique, la caractérisation des diastéréomères de « phostines » a été menée. Suite à cette détermination structurale, le développement de synthèses diastéréosélectives a permis d'obtenir un mélange fortement enrichi en diastéréomère le plus actif par une séquence réactionnelle qui a mis en jeu une réaction d'oxydation de phosphinosucres -hydroxylés en α-cétophosphinosucres, suivie d'une réduction diastéréosélective. Afin d'améliorer l'activité antiproliférative des phosphinosucres, une diversification chimique a été réalisée. Les variations du groupement aryle lié à l'atome de phosphore nous ont amené à développer une synthèse des aryl-hydrogénophosphinates qui a permis d'obtenir une large variété de ces composés. Par la suite, les aryl-hydrogénophosphinates obtenus ont été engagés dans la synthèse des « phostines ». De plus, des variations chimiques sur le carbone en position α de l'atome de phosphore ont été entreprises et ont permis l'élaboration de plusieurs composés (triflate, azido, amino, déoxy et triazolyles), puis finalement à l'analogue phosphinosucre du N-acétylglucosamine qui a présenté une importante activité anticancéreuse in vitro. / Phosphinosugars also called « phostines » are new cyclic phosphinates, analogs of carbohydrates and C-aryglycosides, with phosphorus atom mimicking the anomeric carbon. Biological screening tests of these compounds revealed an anticancer activity against glioblastoma multiform, a highly invasive and malignant tumor without curative therapy.With the aim of understanding the phosphinosugars mode of action and their stereo-dependent biological activity, characterization of four phosphinosugars diastereomers formed during the chemical process has been performed. After their structural determination, diastereoselective synthesis enabled us to obtain an enriched mixture of the most active diastereomer based on an oxidation of -hydroxyled phosphinosugars in corresponding -keto phosphinosugars followed by a diastereoselective reduction. Thereafter, antiproliferative activity of phoshinosugars was performed by chemical diversification. Modification of the aryl group linked to phosphorus atom led us to develop aryl-hydrogenophosphinate synthesis to create a broad variety of these structures. Then, the expected aryl-hydrogenophosphinates were used for phostines preparation. Furthermore, chemical modifications on the carbon in α position of phosphorus atom were led and furnished several new compounds (triflate, azido, amino, deoxy and triazolyl), as well as the phosphinosugar analog of N-acetylglucosamine which presented in vitro a high anticancer activity.
47

Nouvelles réactions de contraction de cycle : outils pour la construction d'édifices organisés / New ring contraction reactions : tools for the construction of organised edifices

Chaubet, Guilhem 04 December 2013 (has links)
Ces travaux de thèse s'inscrivent dans un projet à long terme concernant le développement de nouvelles réactions de contraction de cycle originales afin d'accéder à des édifices moléculaires organisés à activités biologiques potentielles. Généralement découvertes de manière fortuite, les réactions de contraction de cycle sont des réarrangements offrant l'avantage de modifier rapidement le squelette des molécules et permettant donc un accès facile à des analogues structurels, une propriété intéressante et utile aussi bien en chimie de synthèse qu'en chimie médicinale. Dans cette optique, trois réactions de contraction de cycle différentes ainsi que leurs applications seront rapportées dans ce manuscrit. La première décrit la réactivité particulière des bis-Boc 2,5-dicétopipérazines (DKPs) en milieu basique et leur conversion en hydantoïnes, deux squelettes hétérocycliques d'intérêt pharmacologique. Ce nouveau réarrangement a été appliqué à différentes DKPs avec des rendements satisfaisants et de bons excès énantio- ou diastéréoiso-mériques. L'intérêt des bis-Boc DKPs en tant que plateforme de départ dans la construction de structures complexes a ensuite été démontré lors de l'obtention de spirolactames grâce à l'utilisation de la réaction de réarrangement transannulaire de lactames activés (TRAL) et la mise au point d'une stratégie de cyclisation rapide et efficace. Après dimérisation de ces bicycles, les études par dichroïsme circulaire, RMN et modélisation moléculaire ont mis en évidence un comportement similaire à celui d'hélices de polyproline II (PPII), des structures peptidiques secondaires largement impliquées dans les interactions protéine-protéine et dans des processus pathogènes. Afin de valider le potentiel de mimes de nos dimères, une fonctionnalisation de ces substrats s'est avérée nécessaire, qui a été en partie réalisée grâce à la découverte d'une nouvelle réaction de contraction de cycle. Effectuée à chaud dans plusieurs solvants et en présence d'un catalyseur de type triflate, ce réarrangement permet la conversion de quelques bicycles accolés en spirocycles avec de bons rendements. L'intérêt de ces travaux réside ainsi sur l'utilisation de 2,5-dicétopipérazines activées comme substrat de départ et démontre la gamme d'applications multiples des réactions de contraction de cycle. / This work is part of a long-term project aiming to develop new and original ring contraction reactions to access organised molecular edifices with potential biological activities. Ring contraction reactions are usually discovered in a fortuitous manner and present the advantage of rapid and efficient modifications of the molecular skeletons, allowing thus an easy access to structural analogues, a useful and interesting property both in terms of synthetic and medicinal chemistry. With this aim in mind, three different ring contraction reactions, as well as their uses, are reported in this manuscript. The first one describes the particular reactivity of bis-Boc 2,5-diketopiperazines (DKPs) in a basic medium and their conversion into hydantoins, two heterocyclic skeletons with pharmacological interest. This new rearrangement has been applied to several DKPs with acceptable yields and good enantio- or -diasteroiso-meric excesses. The interest of bis-Boc DKPs as starting platforms for the construction of complex structures has later been demonstrated with the obtaining of spirolactams thanks to the use of the transannular rearrangement of activated lactams (TRAL) reaction followed by a fast and efficient ring-synthesis strategy. The studies by circular dichroism, NMR and molecular modelling performed after the dimerisation of those bicycles showed a similar behaviour to the one of polyproline II (PPII) helix, a secondary peptidic structure involved in protein-protein interactions and in pathogenic processes. A functionalization of our dimer then turned out to be necessary in order to validate the mimic potential of our dimers, which was done in part thanks to the discovery a new ring contraction reaction. In the presence of a triflate catalyst in various solvents under high temperatures this rearrangement allows a clean conversion of some fused bicycles into spirocycles with good yields. The interest of this work thus lies in the use of activated 2,5-diketopiperazines as starting materials and demonstrates the wide range of applications of ring contraction reactions.
48

Análise estereosseletiva de fármacos com aplicação em estudos de biotransformação empregando fungos / Stereoselective analysis of drugs with application in biotransformation studies employing fungi

Borges, Keyller Bastos 27 July 2010 (has links)
Este trabalho teve por finalidade o desenvolvimento e validação de métodos para análise estereosseletiva de alguns fármacos e metabólitos, bem como a aplicação desses métodos na avaliação do potencial de fungos, principalmente endofíticos, em processos de biotransformação. Os seguintes fármacos foram selecionados para esse estudo: fluoxetina, propranolol, omeprazol, oxibutinina e ibuprofeno. Para determinação simultânea dos enantiômeros da fluoxetina (FLX) e norfluoxetina (NFLX) em meios de cultura de fungos endofíticos, empregou-se a cromatografia líquida de alta eficiência com detecção por absorção no ultravioleta, em um sistema com duas colunas em série, sendo uma de fase reversa (C18) e outra com fase estacionária quiral (Chirobiotic® V). A fase móvel foi composta por etanol: tampão acetato de amônio 15 mmol L-1, pH 5,90: acetonitrila (77,5: 17,5: 5, v/v/v) e a detecção foi realizada em 227 nm. A extração líquido-líquido foi empregada na preparação das amostras. As curvas analíticas foram lineares no intervalo de concentração de 12,5 a 3750 ng mL-1 (r 0,996) para todos os enantiômeros analisados. Os coeficientes de variação e erros relativos obtidos nos estudos de precisão e exatidão foram inferiores a 10%. Nas condições empregadas, os cinco fungos endofíticos estudados não foram capazes de promover a biotransformação da FLX (reação de demetilação). A eletroforese capilar foi empregada para análise enantiosseletiva do propranolol (PROP) e 4-hidroxipropranolol (4-OHPROP). A melhor condição de resolução dos enantiômeros foi encontrada com a aplicação de um planejamento experimental de Box-Behnken: solução de eletrólitos composta por tampão trietilamina / ácido fosfórico (TEA/H3PO4), 25 mmol L-1, pH 9,00, carboximetil--ciclodextrina 4% (m/v) como seletor quiral e análise realizada na voltagem de 17 kV. O método de extração líquido-líquido também foi empregado para preparação das amostras. As curvas analíticas foram lineares no intervalo de concentração de 0,25 a 10,0 g mL-1 para 4-OHPROP e de 0,10 a 10,0 g mL-1 para PROP, apresentando coeficientes de correlação (r) 0,995 para todos os enantiômeros analisados. Os coeficientes de variação e erros relativos obtidos nos estudos de precisão e exatidão foram inferiores a 15%. Os cinco fungos endofíticos em estudo se mostraram eficientes na biotransformação estereosseletiva do PROP, com maior formação do metabólito (-)-(S)-4-OHPROP. O fungo Glomerella cingulata (VA1), em especial, apresentou uma concentração de 1,745 g mL-1 do enantiômero (-)-(S)-4-OHPROP depois de 72 horas de incubação, ao passo que a formação do enantiômero (+)-(R)-4-OHPROP não foi observada. A utilização deste fungo em escalas ampliadas pode ser uma fonte promissora de obtenção do metabólito 4-OHPROP na forma enantiomericamente pura. A determinação simultânea de omeprazol (OMZ), 5-hidroxiomeprazol (5-HOMZ) e omeprazol sulfona (OMZ SUL) em meio de cultura Czapek Dox modificado ii tamponado foi realizada empregando um método rápido de análise por cromatografia líquida de ultra eficiência com detector por arranjo de diodos (UPLC / DAD), usando coluna monolítica de fase reversa e eluição por gradiente. OMZ, 5-HOMZ e OMZ SUL foram extraídos das amostras utilizando uma mistura de acetato de etila: t-butil metil éter (9: 1, v/v). A separação foi obtida empregando uma coluna RP 18 Chromolith Fast Gradient endcapped e fase móvel constituída por 0,15% (v/v) de ácido trifluoroacético (TFA) em água (solvente A) e 0,15% (v/v) de TFA em acetonitrila (solvente B). Os tempos de retenção foram de 0,70 min para 5-HOMZ, 0,74 min para OMZ, 0,77 min para OMZ SUL e 0,91 min para o padrão interno (bupropiona, BUP). O método foi linear no intervalo de 0,2 a 10,0 g mL-1 (r 0,995) para todos os analitos. O processo de biotransformação foi realizado durante apenas 24 horas de incubação, por causa de problemas de estabilidade do OMZ. Por esse mesmo motivo, a biotransformação estereosseletiva não foi avaliada. Apenas três fungos apresentaram formação do metabólito 5-HOMZ, e dentre estes, apenas o fungo Botritis cinerea (BC) produziu esse metabólito em concentração superior ao limite de quantificação do método. A formação do metabólito OMZ SUL foi observada para todos os fungos, exceto para Glomerella cingulata (VA1) e Guignardia mangiferae (VA15). Esses fungos podem ser úteis para a obtenção dos metabólitos do OMZ, mas estudos detalhados do comportamento do fármaco nas condições de cultivo são necessários, uma vez que este substrato pode sofrer degradação em meio ácido e na presença de luz. A análise simultânea dos enantiômeros da oxibutinina (OXY) e da N-desetiloxibutinina (DEOB) em meio de cultura Czapek foi obtida empregando a cromatografia líquida de alta eficiência com detector UV (HPLC/UV). Os analitos foram separados usando coluna quiral Chiralpak AD e fase móvel constituída por hexano: isopropanol: etanol: dietilamina (94: 4: 2: 0,05, v/v/v/v) e detectados em 210 nm. Um estudo piloto de biotransformação empregando os mesmos fungos e as condições de biotransformação utilizadas para os demais fármacos mostrou que não houve a formação do metabólito de interesse. Além disso, não houve uma diminuição significativa da concentração de OXY durante o período de incubação, o que poderia ser um indicativo da formação de outros metabólitos não monitorados nas condições de análise. Como a reação de desetilação da OXY para formar a DEOB não foi observada nos experimentos, não foi necessário realizar a validação do método analítico. A separação simultânea do ibuprofeno (IBP), dos enantiômeros do 2-hidroxi-ibuprofeno (2-OH-IBP) e dos estereoisômeros do carboxi-ibuprofeno (COOH-IBP) foi realizada empregando-se uma coluna Chiralpak AS-H e fase móvel constituída por hexano: isopropanol: TFA (95: 5: 0,1, v/v/v). O solvente extrator usado na extração líquido-líquido foi uma mistura de hexano: acetato de etila (1: 1, v/v). A detecção foi feita por espectrometria de massas (MS/MS), com a fonte de ionização por eletronebulização operada no modo positivo (ESI+). O método foi linear nos intervalos de 0,1 a 20,0 g mL-1 para IBP, de 0,05 a 7,5 g mL-1 para o cada enantiômero do 2-OH-IBP e de 0,025 a 5,0 g mL-1 para cada estereoisômero do COOH-IBP. Os demais parâmetros de validação obtidos para o método apresentaram-se dentro dos limites recomendados pela literatura. Os sete fungos endofíticos estudados se mostraram eficientes na biotransformação do IBP em seu principal metabólito 2-OH-IBP, mas apenas os fungos Nigrospora sphaerica (SS67) e Chaetomium globosum (VR10) iii biotransformaram o IBP de forma enantiosseletiva mais acentuada, observando-se maior formação do metabólito ativo (+)-(S)-2-OH-IBP. A não estereosseletividade observada para os demais fungos pode ser indício de uma possível conversão quiral do fármaco, similar a que ocorre em humanos. A formação dos estereoisômeros do COOH-IBP não foi observada, provavelmente, porque sua rota de formação envolve uma seqüência de reações. Os resultados apresentados nesse trabalho mostram que fungos, particularmente os endofíticos, podem ser uma fonte promissora para obtenção de metabólitos de fármacos, inclusive de forma enantiomericamente pura. / This work aimed the development and validation of suitable methods for the stereoselective analysis of some drugs and metabolites, as well as, the application of these methods to assess the potential of fungi, mainly the endophytic ones, in biotransformation processes. The following drugs were selected for this study: fluoxetine, propranolol, omeprazole, oxybutynin and ibuprofen. The simultaneous determination of fluoxetine (FLX) and norfluoxetine (NFLX) enantiomers in culture media of endophytic fungi was carried out by high-performance liquid chromatography with UV-detection, in a system of two columns coupled in series, in which one of them was a reversed phase (C18) column and the another one was a chiral stationary phase column (Chirobiotic ® V). The mobile phase consisted of ethanol: ammonium acetate buffer, 15 mol L-1, pH 5.90: acetonitrile (77.5: 17.5: 5, v/v/v) and the detection was performed at 227 nm. Liquid-liquid extraction was employed for sample preparation. The analytical curves were linear over the concentration range of 12.5 to 3750 ng mL-1 (r 0.996) for all enantiomers evaluated. The coefficients of variation and relative errors obtained in the evaluation of method precision and accuracy were lower than 10%. In the studied conditions, the five endophytic fungi used were not able to perform the biotransformation of FLX (demethylation reaction). Capillary electrophoresis was employed for the enantioselective analysis of propranolol (PROP) and 4-hydroxypropranolol (4-OHPROP). The best condition for enantiomer resolution was obtained by applying an experimental design of Box-Behnken: electrolyte solution composed of triethylamine / phosphoric acid (TEA/H3PO4) buffer, 25 mmol L-1, pH 9.00, with 4% (w/v) carboxymethyl--cyclodextrin as the chiral selector and analysis performed at 17 kV. Liquid-liquid extraction was also used for sample preparation. The analytical curves were linear over the concentration range of 0.25 to 10.0 g mL-1 for 4-OHPROP and 0.10 to 10.0 g mL-1 for PROP, presenting correlation coefficients (r) 0.995 for all enantiomers evaluated. The coefficients of variation and relative errors obtained in the evaluation of precision and accuracy were lower than 15%. All the five endophytic fungi (Phomopsis sp. (TD2), Glomerella cingulata (VA1), Penicillium crustosum (VR4), Chaetomium globosum (VR10) and Aspergillus fumigatus (VR12)) showed effectiveness in the stereoselective biotransformation of PROP, with higher formation of (-)-(S)-4-OH-PROP. The fungus Glomerella cingulata (VA1), in particular, showed a concentration of 1.745 g mL-1 for the enantiomer (-)-(S)-4-OHPROP after 72 hours of incubation, whereas there was no formation of the enantiomer (+)-(R)-4-OHPROP. Therefore, the use of this fungus in large scale may be a promising source to obtain 4-OHPROP in the enantiomerically pure form. A fast analytical method based on ultra-performance liquid chromatography / diode array detector (UPLC/DAD) using a monolithic reversed phase column and gradient elution was developed for the simultaneous determination of omeprazole (OMZ), 5-hydroxyomeprazole (5-HOMZ) and omeprazole sulfone (OMZ SUL) in modified and buffered Czapek-Dox culture medium. OMZ, 5-HOMZ and OMZ SUL were extracted using a mixture of ethyl acetate: methyl t-butyl ether (9: 1, v/v). The separation was achieved using a Chromolith Fast Gradient RP 18 endcapped column with the mobile phase consisting of 0.15% (v/v) trifluoroacetic acid (TFA) in water (solvent A) and 0.15% (v/v) TFA in acetonitrile (solvent B). Retention times were 0.70 min for 5-HOMZ, 0.74 min for OMZ, 0.77 min for OMZ SUL and 0.91 min for internal standard (bupropion, BUP). The method was linear over the concentration range of 0.2 to 10.0 g mL-1 (r 0.995) for all analytes. The biotransformation process was carried out only within 24 hours of incubation, due to OMZ instability. For the same reason, the stereoselectivity in this process was not evaluated. The formation of the metabolite 5-HOMZ was observed only for three fungi, and among them, only the fungus Botrytis cinerea (BC) produced this metabolite in concentrations higher than the limit of quantification. The formation of OMZ SUL was observed for all fungi, except for Guignardia mangiferae (VA1) and Glomerella cingulata (VA15). The fungi evaluated in this study can be useful to obtain the metabolites of OMZ, but detailed study of the drug stability in culture conditions is required, since this substrate can undergo degradation in acidic conditions and in the presence of light. The simultaneous analysis of oxybutinin (OXY) and N-desethyloxybutinin (DEOB) enantiomers in Czapek culture medium was carried out by liquid chromatography with UV detection (HPLC/UV). The analytes were separated using a Chiralpak AD column employing as mobile phase hexane: isopropanol: ethanol: diethylamine (94: 4: 2: 0.05, v/v/v/v) and detection at 210 nm. A pilot study of biotransformation using the same fungi and conditions employed for the biotransformation of the other drugs showed that the metabolite of interest was not formed. Moreover, the decrease in the concentration of OXY, which could be indicative of the formation of other metabolites not monitored under the conditions of analysis, was not observed. Since the reaction of OXY desethylation to form DEOB was not observed in the experiments, the validation of the analytical method was not required. The method for the simultaneous analysis of ibuprofen (IBP), 2-hydroxyibuprofen (2-OH-IBP) enantiomers and carboxyibuprofen (IBP-COOH) stereoisomers was developed using a Chiralpak AS-H column and a mobile phase consisting of hexane: isopropanol: TFA (95: 5: 0.1, v/v/v). A mixture of hexane: ethyl acetate (1: 1, v/v) was used as solvent extractor for sample preparation. The detection was performed by tanden mass spectrometry (MS/MS) with the electrospray interface operated in the positive mode (ESI+). The method was linear over the concentration range of 0.1 to 20.0 g mL-1 for IBP, 0.05 to 7.5 g mL-1 for each 2-OH-IBP enantiomer and 0.025 to 5.0 g mL-1 for each COOH-IBP stereoisomer. The other validation parameters studied were within the limits established in the literature. The seven studied endophytic fungi showed to be efficient in the biotransformation of IBP to its main metabolite 2-OH-IBP, however, only the fungi Nigrospora sphaerica (SS67) and Chaetomium globosum (VR10) biotransformed IBP enantioselectively, with greater formation of the active metabolite (+)-(S)-2-OH-IBP. The lack of stereoselectivity observed for the other fungi could be caused by a possible chiral inversion process occurring for IBP, in a similar way that happens in humans. The formation of COOH-IBP stereoisomers was not observed probably because the route of formation of this metabolite requires a sequence of reactions. The results presented here show that fungi, particularly the endophytic ones, may be a promising source to obtain the metabolites of drugs, including in their enantiomerically pure form.
49

Underexploited (ipso, ortho) microbial arene dihydroxylation : uses in synthesis & catalysis

Griffen, Julia Anne January 2013 (has links)
This thesis sought to expand upon the synthetic application of the underexploited ipso, ortho diene cis-diol microbial arene oxidation product from benzoic acid. The microbial oxidation of benzoic acid by mutant strains of bacteria to give the ipso, otho diene cis-diol may be considered to be a green and clean method. This biocatalytic route yields large quantities of an enantiopure chiral building block, which is not assessable via traditional synthetic methods. The fermentation product has seen application towards the synthesis of aminocylitols, which have been tested for their biological activity. Attempts to synthesise the fully oxygenated counterparts, cyclitols, were investigated. Expansion of previous work using a bromine substituted derivative led to a range of cross-coupled and iron co-ordinated products. Finally, a range of novel chiral acids and ketones were synthesised and evaluated for their catalytic activity towards asymmetric epoxidation.
50

Palladium-Catalysed Couplings in Organic Synthesis : Exploring Catalyst-Presenting Strategies and Medicinal Chemistry Applications

Trejos, Alejandro January 2012 (has links)
Palladium-catalysed coupling reactions have been embraced by synthetic chemists as one of the preferred means for smooth formation of new carbon-carbon bonds: a truly ubiquitous methodology of synthesizing complex molecules. This thesis describes the study of a series of palladium(0)-catalysed C2-arylations of a 1-cyclopentenyl ether, equipped with a chiral (S)-N-methyl-pyrrolidine auxiliary. The investigated olefin was demonstrated to undergo Si-face insertion, providing (R)-configuration of the arylated C2-carbon. In addition, the mild and novel palladium(II)-catalysed dominoHeck/Suzuki β,α-diarylation-reduction of a dimethylaminoethyl-substituted chelating vinyl ether was developed using arylboronic acids as arylating agents in combination with 1,4-benzoquinone (BQ). Further, highly regioselective palladium(II)-catalysed α-and β-monoarylation of the chelating vinyl ether was achieved using either a bidentate ligand or by employing ligand-less conditions. These studies demonstrate that the choice of ligands has a profound effect on the reaction outcome, as productive β,α-diarylation could only be obtained by suppressing the competing β-hydride elimination using BQ as the stabilising ligand and terminal reoxidant. The pivotal role of BQ in the reaction was studied using computer-aided density functional theory calculations. The calculations highlight the crucial role of BQ as a Pd(II)-ligand. In addition of serving as an oxidant of palladium, the calculations support the view that the coordination of BQ to the Pd(II)-centre in the key σ-alkyl complex leads to a low-energy pathway, aided by a strong η2 Pd-BQ donation-back-donation interaction. Furthermore, an investigation of the scope and limitations of novel stereoselective and BQ-mediated palladium(II)-catalysed domino Heck/Suzuki β,α-diarylation reactions, involving metal coordinating cyclic methylamino vinyl ethers and a number of electronically diverse arylboronic acids, conducted. In addition, a set of 4-quinolone-3-carboxylic acids, structurally related to elvitegravir and bearing different substituents on the condensed benzene ring, was designed and synthesized as potential HIV-1 integrase inhibitors. Finally, in an effort to identify a new class of HIV-1 protease inhibitors, four different stereopure β-hydroxy γ-lactam-containing inhibitors were synthesized, biologically evaluated, and co-crystallized with the enzyme. / The time 12:05 for the public defense mentioned in the thesis is incorrect. It will take place at 09:15, 2012-06-08.

Page generated in 0.0962 seconds