• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudos biofísicos e de atividade de peptídeos correspondentes ao N-terminal das toxinas esticolisinais I e II - contribuição para a elucidação do mecanismo de ação / Biophysical and activity studies of peptides corresponding to the N-termini of sticholysins I and II - a contribution to the elucidation of the toxins\' mechanism of action

Carretero, Gustavo Penteado Battesini 25 April 2016 (has links)
Esticolisinas I e II, citolisinas purificadas da anêmona marinha Stichodactyla helianthus, agem lisando membranas biológicas e modelo. O mecanismo de ação proposto consiste na formação de um poro toroidal com o envolvimento do domínio N-terminal. Diferentes aspectos da interação entre peptídeos derivados do N-terminal das toxinas (StI1-31 and StI12-31 SELAGTIIDGASLTFEVLDKVLGELGKVSRK, e StII1-30 and StII11-30 ALAGTIIAGASLTFQVLDKVLEELGKVSRK) com membranas modelo - micelas e bicamadas - foram estudados com o objetivo de contribuir para a elucidação do mecanismo de ação das toxinas em nível molecular. O emprego dos peptídeos teve como base a hipótese de que fragmentos proteicos podem ser capazes de mimetizar a estrutura e atividade das proteínas inteiras. O análogo contendo o aminoácido paramagnético TOAC (N-TOAC-StII11-30) também foi estudado. Estudos conformacionais foram realizados empregando-se as técnicas espectroscópicas de dicroísmo circular (CD), ressonância paramagnética eletrônica (EPR) e fluorescência. Foram ainda realizados estudos de predição de estrutura e modelagem molecular. Espectros de CD mostraram que os peptídeos adquirem conformação em α-hélice ao interagir com membranas modelo, de acordo com a conformação observada nessa região para as toxinas. Variando a composição lipídica das membranas modelo estudadas, foi possível investigar a contribuição de forças eletrostáticas de de interações hidrofóbicas para a ligação do peptídeo. Ensaios de supressão de fluorescência de lípidos contendo grupamentos fluorescentes em diferentes posições pelo resíduo paramagnético TOAC e espectros de ressonância paramagnética eletrônica (EPR) permitiram localizar o resíduo TOAC na interface membrana-água, corroborando o modelo proposto do poro toroidal. A análise dos espectros de CD e EPR também permitiu obter as constantes de ligação dos peptídeos com micelas e bicamadas. Os peptídeos também foram capazes de mimetizar as toxinas do ponto de vista funcional, como mostrado por testes de vazamento de carboxifluoresceína e atividade hemolítica. Peptídeos curtos, contendo partes da sequência de StII1-30, sintetizados com o objetivo de examinar uma eventual atividade antimicrobiana, demonstraram baixa atividade, bem como ausência de atividade hemolítica e de toxicidade para células humanas. / Sticholysins I and II, cytolysins purified from the sea anemone Stichodactyla helianthus, act by lysing biological and model membranes. The proposed mechanism of action consists in the formation of a toroidal pore with the involvement of the N-terminal domain [1]. Different aspects of the interaction between peptides from the toxins\' N-termini (StI1-31 and StI12-31 SELAGTIIDGASLTFEVLDKVLGELGKVSRK, and StII1-30 and StII11-30 ALAGTIIAGASLTFQVLDKVLEELGKVSRK) and model membranes - micelles and bilayers - have been studied to contribute to the elucidation of the toxins mechanism of action at the molecular level. The use of peptides was based on the hypothesis that potein fragments can eventually mimic the structure and activity of the whole protein. An analogue containing the paramagnetic amino acid TOAC (N-TOAC-StII11-30) was also studied. Conformational studies were performed making use of the spectroscopic techniques circular dichroism (CD), electron paramagnetic resonance (EPR), and fluorescence. Studies of structure prediction and molecular modeling were also performed. CD spectra showed that the peptides acquired α-helical conformation upon interaction with model lipid membranes, in agreement with the conformation found for these segments in the whole proteins. Making use of membranes of variable lipid composition, it was possible to assess the contribution of electrostatic and hydrophobic interactions for peptide binding. Fluorescence quenching of labeled lipids by paramagnetic TOAC and EPR spectra allowed us to locate the TOAC residue at the membrane-water interface, corroborating the proposed model of the toroidal pore. The CD and EPR studies also allowed us to obtain the binding constants for the peptide-micelle and peptide-bilayer interaction. The peptides were also capable of mimicking the toxins function, as shown by assays of carboxyfluorescein leakage and hemolytic activity. Short peptides containing parts of StII1-30\'s sequence were synthesized with the aim of testing their antimicrobial activity. The peptides displayed low antimicrobial activity, as well as lack of hemolytic activity and toxicity against human cells.
2

Estudos biofísicos e de atividade de peptídeos correspondentes ao N-terminal das toxinas esticolisinais I e II - contribuição para a elucidação do mecanismo de ação / Biophysical and activity studies of peptides corresponding to the N-termini of sticholysins I and II - a contribution to the elucidation of the toxins\' mechanism of action

Gustavo Penteado Battesini Carretero 25 April 2016 (has links)
Esticolisinas I e II, citolisinas purificadas da anêmona marinha Stichodactyla helianthus, agem lisando membranas biológicas e modelo. O mecanismo de ação proposto consiste na formação de um poro toroidal com o envolvimento do domínio N-terminal. Diferentes aspectos da interação entre peptídeos derivados do N-terminal das toxinas (StI1-31 and StI12-31 SELAGTIIDGASLTFEVLDKVLGELGKVSRK, e StII1-30 and StII11-30 ALAGTIIAGASLTFQVLDKVLEELGKVSRK) com membranas modelo - micelas e bicamadas - foram estudados com o objetivo de contribuir para a elucidação do mecanismo de ação das toxinas em nível molecular. O emprego dos peptídeos teve como base a hipótese de que fragmentos proteicos podem ser capazes de mimetizar a estrutura e atividade das proteínas inteiras. O análogo contendo o aminoácido paramagnético TOAC (N-TOAC-StII11-30) também foi estudado. Estudos conformacionais foram realizados empregando-se as técnicas espectroscópicas de dicroísmo circular (CD), ressonância paramagnética eletrônica (EPR) e fluorescência. Foram ainda realizados estudos de predição de estrutura e modelagem molecular. Espectros de CD mostraram que os peptídeos adquirem conformação em α-hélice ao interagir com membranas modelo, de acordo com a conformação observada nessa região para as toxinas. Variando a composição lipídica das membranas modelo estudadas, foi possível investigar a contribuição de forças eletrostáticas de de interações hidrofóbicas para a ligação do peptídeo. Ensaios de supressão de fluorescência de lípidos contendo grupamentos fluorescentes em diferentes posições pelo resíduo paramagnético TOAC e espectros de ressonância paramagnética eletrônica (EPR) permitiram localizar o resíduo TOAC na interface membrana-água, corroborando o modelo proposto do poro toroidal. A análise dos espectros de CD e EPR também permitiu obter as constantes de ligação dos peptídeos com micelas e bicamadas. Os peptídeos também foram capazes de mimetizar as toxinas do ponto de vista funcional, como mostrado por testes de vazamento de carboxifluoresceína e atividade hemolítica. Peptídeos curtos, contendo partes da sequência de StII1-30, sintetizados com o objetivo de examinar uma eventual atividade antimicrobiana, demonstraram baixa atividade, bem como ausência de atividade hemolítica e de toxicidade para células humanas. / Sticholysins I and II, cytolysins purified from the sea anemone Stichodactyla helianthus, act by lysing biological and model membranes. The proposed mechanism of action consists in the formation of a toroidal pore with the involvement of the N-terminal domain [1]. Different aspects of the interaction between peptides from the toxins\' N-termini (StI1-31 and StI12-31 SELAGTIIDGASLTFEVLDKVLGELGKVSRK, and StII1-30 and StII11-30 ALAGTIIAGASLTFQVLDKVLEELGKVSRK) and model membranes - micelles and bilayers - have been studied to contribute to the elucidation of the toxins mechanism of action at the molecular level. The use of peptides was based on the hypothesis that potein fragments can eventually mimic the structure and activity of the whole protein. An analogue containing the paramagnetic amino acid TOAC (N-TOAC-StII11-30) was also studied. Conformational studies were performed making use of the spectroscopic techniques circular dichroism (CD), electron paramagnetic resonance (EPR), and fluorescence. Studies of structure prediction and molecular modeling were also performed. CD spectra showed that the peptides acquired α-helical conformation upon interaction with model lipid membranes, in agreement with the conformation found for these segments in the whole proteins. Making use of membranes of variable lipid composition, it was possible to assess the contribution of electrostatic and hydrophobic interactions for peptide binding. Fluorescence quenching of labeled lipids by paramagnetic TOAC and EPR spectra allowed us to locate the TOAC residue at the membrane-water interface, corroborating the proposed model of the toroidal pore. The CD and EPR studies also allowed us to obtain the binding constants for the peptide-micelle and peptide-bilayer interaction. The peptides were also capable of mimicking the toxins function, as shown by assays of carboxyfluorescein leakage and hemolytic activity. Short peptides containing parts of StII1-30\'s sequence were synthesized with the aim of testing their antimicrobial activity. The peptides displayed low antimicrobial activity, as well as lack of hemolytic activity and toxicity against human cells.
3

Estudos conformacionais de peptídeos correspondentes à região N-terminal das toxinas protéicas esticolisinas I e II / Conformational Studies of Peptides Corresponding to the N-terminal Region of the Proteinaceous Toxins Sticholysin I and II

Paulino, Joana 26 July 2010 (has links)
Esticolisinas I e II (S tI e St II), citolisinas pertencentes à família das actinoporinas, da anêmona Stichodactila heliantus, formam poros em membranas biológicas e modelo onde seu receptor putativo é esfingomielina (SM). A ligação das actinoporinas a membranas ocorre pelo ancoramento da proteína à interface lipídio-água, por uma região rica em resíduos aromáticos. Evidências apontam para o papel fundamental da região N-terminal para formação do poro. O mecanismo proposto para a formação do poro consiste na ligação da toxina à interface membrana-água, oligomerização, e dissociação da região N-terminal do corpo da proteína, cuja α-hélice anfipática interaje com a bicamada, levando à formação de um poro toroidal. Estudos com peptídeos correspondentes à região N-terminal de St II e equinatoxina II (Eqt II) mostraram que estes fragmentos adquirem conformação em α-hélice na presença de membranas modelo, possuindo a capacidade de formar poros em membranas biológicas e modelo, mimetizando o comportamento desta região nas proteínas. St I e St II, que possuem 93% de identidade, apresentam atividades hemolíticas distintas, sendo St II mais ativa. Estudos mostraram que fragmentos da região N-terminal de St I e St II possuem atividades hemolíticas diferentes, e que os primeiros dez resíduos de St II tem papel importante na lise, e na agregação. Para compreender a nível molecular a interação entre o N-terminal das toxinas com membranas e sua dependência da composição lipídica, foram realizados estudos de dicroísmo circular (CD) e ressonância paramagnética eletrônica (EPR) da interação de quatro fragmentos da região N-terminal de St I (St I1-31 e S t I12-31) e St II (St II1-30 e St II11-30) com membranas modelo - bicamadas e micelas. A interação peptídeo-membrana mostrou-ser dependente: da sequência, e da composição lipídica. Espectros de CD mostraram que a ligação dos peptídeos promove aquisição de estrutura helicoidal; em solução os peptídeos possuem essencialmente estrutura ao acaso. O efeito da ligação dos peptídeos sobre a organização molecular dos lipídios foi monitorado por EPR. Os espectros de EPR mostraram que a ligação a bicamadas e micelas leva ao aumento da organização molecular dos lipídios, St II1-30 alterando o empacotamento molecular em maior extensão. A incorporação de lipídios negativamente carregados e de lipídios formadores de microdomínios ordenados aumentou a afinidade dos peptídeos pelas membranas modelo, especialmente em proporções molares onde ocorre a formação desses microdomínios. Os resultados também indicaram que apenas St II1-30 promoveu alterações significativas no espectro de um marcador de spin fosfolipídico marcado em C16 da cadeia acila incorporado em vesículas multilamelares (MLV), sugerindo que apenas este peptídeo penetra na bicamada, enquanto que os demais permanecem preferencialmente na interface. Os peptídeos interagiram de forma diferente com micelas e bicamadas, provavelmente devido a diferenças no empacotamento molecular nos dois sistemas. A interação diferencial dos peptídeos com bicamadas e micelas poderia refletir as interações com a membrana em diferentes etapas da formação do poro toroidal. Considerando a curvatura positiva na parede de um poro toroidal, a interação com micelas poderia estar mimetizando a topografia desse ambiente. / Sticholysins I and II (S tI and St II), belong to the actinoporins family and are produced by the anemone Stichodactila heliantus. The toxins form pores in biological and model membranes, their putative receptor being sphingomyelin (SM). Binding of actinoporins to membranes occurs via anchoring of an aromatic amino acid-rich region to the lipid-water interface. Evidences point to the importance of the N-terminal region for pore formation. The mechanism proposed for pore formation consists of toxin binding to the membrane-water interface, oligomerization, and dissociation of the N-terminus from the body of the protein. Next, the amphipathic α-helix in this region interacts with the bilayer, forming a toroidal pore. Studies of peptides from St II and equinatoxin II (Eqt II) N-terminus showed that they acquire α-helical conformation upon binding to model membranes and form pores in biological and model membranes, thereby mimicking the conformational and functional behavior of this region in the proteins. St I and St II (93% identity) display different hemolytic activity, St II being more active. Studies showed that fragments of St I and St II N-terminus also display different hemolytic activity, and that the first ten residues of St II play are important for lysis and peptide aggregation. In order to understand at the molecular level the N-terminus-membrane interaction, as well as its dependence on lipid composition, circular dichroism (CD) and electron paramagnetic resonance (EPR) studies of the interaction between four fragments of St I (St I1-31 and S t I12-31) and St II (St II1-30 and St II11-30) with model membranes bilayers and micelles - were performed. The interaction was found to depend on peptide sequence, and lipid composition. CD spectra showed that peptide binding promotes acquisition of helical structure. The effect of binding on lipid molecular organization was monitored by EPR. EPR spectra showed that peptide binding to bilayers and micelles leads to an increase of membrane molecular organization, St II1-30 being more effective. Incorporation of negatively charged lipids and of lipids that ordered microdomains increased peptide affinity for model membranes, especially when they were present at molar proportions known to originate such microdomains. It was found that only St II1-30 promoted significant alterations in the spectra of a phospholipid spin-labeled at C16 incorporated in multilamellar vesicles, (MLV), suggesting that while this peptide penetrates in the bilayer, the others remain preferentially at the interface. The peptides interaction with micelles was both qualitatively and quantitatively different than that with bilayers, electrostatic interactions playing a lesser role in this case. One important reason for the observed differences is probably due to differences in molecular packing in both types of aggregates. The differential interaction with bilayers and micelles could reflect the interaction with membranes indifferent steps of toroidal pore formation. Taking into account the positive curvature of a toroidal pore, the interaction with micelles could represent a model for peptide and lipid organization in the toroidal pore
4

Estudos conformacionais de peptídeos correspondentes à região N-terminal das toxinas protéicas esticolisinas I e II / Conformational Studies of Peptides Corresponding to the N-terminal Region of the Proteinaceous Toxins Sticholysin I and II

Joana Paulino 26 July 2010 (has links)
Esticolisinas I e II (S tI e St II), citolisinas pertencentes à família das actinoporinas, da anêmona Stichodactila heliantus, formam poros em membranas biológicas e modelo onde seu receptor putativo é esfingomielina (SM). A ligação das actinoporinas a membranas ocorre pelo ancoramento da proteína à interface lipídio-água, por uma região rica em resíduos aromáticos. Evidências apontam para o papel fundamental da região N-terminal para formação do poro. O mecanismo proposto para a formação do poro consiste na ligação da toxina à interface membrana-água, oligomerização, e dissociação da região N-terminal do corpo da proteína, cuja α-hélice anfipática interaje com a bicamada, levando à formação de um poro toroidal. Estudos com peptídeos correspondentes à região N-terminal de St II e equinatoxina II (Eqt II) mostraram que estes fragmentos adquirem conformação em α-hélice na presença de membranas modelo, possuindo a capacidade de formar poros em membranas biológicas e modelo, mimetizando o comportamento desta região nas proteínas. St I e St II, que possuem 93% de identidade, apresentam atividades hemolíticas distintas, sendo St II mais ativa. Estudos mostraram que fragmentos da região N-terminal de St I e St II possuem atividades hemolíticas diferentes, e que os primeiros dez resíduos de St II tem papel importante na lise, e na agregação. Para compreender a nível molecular a interação entre o N-terminal das toxinas com membranas e sua dependência da composição lipídica, foram realizados estudos de dicroísmo circular (CD) e ressonância paramagnética eletrônica (EPR) da interação de quatro fragmentos da região N-terminal de St I (St I1-31 e S t I12-31) e St II (St II1-30 e St II11-30) com membranas modelo - bicamadas e micelas. A interação peptídeo-membrana mostrou-ser dependente: da sequência, e da composição lipídica. Espectros de CD mostraram que a ligação dos peptídeos promove aquisição de estrutura helicoidal; em solução os peptídeos possuem essencialmente estrutura ao acaso. O efeito da ligação dos peptídeos sobre a organização molecular dos lipídios foi monitorado por EPR. Os espectros de EPR mostraram que a ligação a bicamadas e micelas leva ao aumento da organização molecular dos lipídios, St II1-30 alterando o empacotamento molecular em maior extensão. A incorporação de lipídios negativamente carregados e de lipídios formadores de microdomínios ordenados aumentou a afinidade dos peptídeos pelas membranas modelo, especialmente em proporções molares onde ocorre a formação desses microdomínios. Os resultados também indicaram que apenas St II1-30 promoveu alterações significativas no espectro de um marcador de spin fosfolipídico marcado em C16 da cadeia acila incorporado em vesículas multilamelares (MLV), sugerindo que apenas este peptídeo penetra na bicamada, enquanto que os demais permanecem preferencialmente na interface. Os peptídeos interagiram de forma diferente com micelas e bicamadas, provavelmente devido a diferenças no empacotamento molecular nos dois sistemas. A interação diferencial dos peptídeos com bicamadas e micelas poderia refletir as interações com a membrana em diferentes etapas da formação do poro toroidal. Considerando a curvatura positiva na parede de um poro toroidal, a interação com micelas poderia estar mimetizando a topografia desse ambiente. / Sticholysins I and II (S tI and St II), belong to the actinoporins family and are produced by the anemone Stichodactila heliantus. The toxins form pores in biological and model membranes, their putative receptor being sphingomyelin (SM). Binding of actinoporins to membranes occurs via anchoring of an aromatic amino acid-rich region to the lipid-water interface. Evidences point to the importance of the N-terminal region for pore formation. The mechanism proposed for pore formation consists of toxin binding to the membrane-water interface, oligomerization, and dissociation of the N-terminus from the body of the protein. Next, the amphipathic α-helix in this region interacts with the bilayer, forming a toroidal pore. Studies of peptides from St II and equinatoxin II (Eqt II) N-terminus showed that they acquire α-helical conformation upon binding to model membranes and form pores in biological and model membranes, thereby mimicking the conformational and functional behavior of this region in the proteins. St I and St II (93% identity) display different hemolytic activity, St II being more active. Studies showed that fragments of St I and St II N-terminus also display different hemolytic activity, and that the first ten residues of St II play are important for lysis and peptide aggregation. In order to understand at the molecular level the N-terminus-membrane interaction, as well as its dependence on lipid composition, circular dichroism (CD) and electron paramagnetic resonance (EPR) studies of the interaction between four fragments of St I (St I1-31 and S t I12-31) and St II (St II1-30 and St II11-30) with model membranes bilayers and micelles - were performed. The interaction was found to depend on peptide sequence, and lipid composition. CD spectra showed that peptide binding promotes acquisition of helical structure. The effect of binding on lipid molecular organization was monitored by EPR. EPR spectra showed that peptide binding to bilayers and micelles leads to an increase of membrane molecular organization, St II1-30 being more effective. Incorporation of negatively charged lipids and of lipids that ordered microdomains increased peptide affinity for model membranes, especially when they were present at molar proportions known to originate such microdomains. It was found that only St II1-30 promoted significant alterations in the spectra of a phospholipid spin-labeled at C16 incorporated in multilamellar vesicles, (MLV), suggesting that while this peptide penetrates in the bilayer, the others remain preferentially at the interface. The peptides interaction with micelles was both qualitatively and quantitatively different than that with bilayers, electrostatic interactions playing a lesser role in this case. One important reason for the observed differences is probably due to differences in molecular packing in both types of aggregates. The differential interaction with bilayers and micelles could reflect the interaction with membranes indifferent steps of toroidal pore formation. Taking into account the positive curvature of a toroidal pore, the interaction with micelles could represent a model for peptide and lipid organization in the toroidal pore

Page generated in 0.0494 seconds