• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stochastic Approximation Algorithms with Set-valued Dynamics : Theory and Applications

Ramaswamy, Arunselvan January 2016 (has links) (PDF)
Stochastic approximation algorithms encompass a class of iterative schemes that converge to a sought value through a series of successive approximations. Such algorithms converge even when the observations are erroneous. Errors in observations may arise due to the stochastic nature of the problem at hand or due to extraneous noise. In other words, stochastic approximation algorithms are self-correcting schemes, in that the errors are wiped out in the limit and the algorithms still converge to the sought values. The rst stochastic approximation algorithm was developed by Robbins and Monro in 1951 to solve the root- nding problem. In 1977 Ljung showed that the asymptotic behavior of a stochastic approximation algorithm can be studied by associating a deterministic ODE, called the associated ODE, and studying it's asymptotic behavior instead. This is commonly referred to as the ODE method. In 1996 Bena•m and Bena•m and Hirsch [1] [2] used the dynamical systems approach in order to develop a framework to analyze generalized stochastic approximation algorithms, given by the following recursion: xn+1 = xn + a(n) [h(xn) + Mn+1] ; (1) where xn 2 Rd for all n; h : Rd ! Rd is Lipschitz continuous; fa(n)gn 0 is the given step-size sequence; fMn+1gn 0 is the Martingale difference noise. The assumptions of [1] later became the `standard assumptions for convergence'. One bottleneck in deploying this framework is the requirement on stability (almost sure boundedness) of the iterates. In 1999 Borkar and Meyn developed a unified set of assumptions that guaranteed both stability and convergence of stochastic approximations. However, the aforementioned frameworks did not account for scenarios with set-valued mean fields. In 2005 Bena•m, Hofbauer and Sorin [3] showed that the dynamical systems approach to stochastic approximations can be extended to scenarios with set-valued mean- fields. Again, stability of the fiterates was assumed. Note that stochastic approximation algorithms with set-valued mean- fields are also called stochastic recursive inclusions (SRIs). The Borkar-Meyn theorem for SRIs [10] As stated earlier, in many applications stability of the iterates is a hard assumption to verify. In Chapter 2 of the thesis, we present an extension of the original theorem of Borkar and Meyn to include SRIs. Specifically, we present two different (yet related) easily-verifiable sets of assumptions for both stability and convergence of SRIs. A SRI is given by the following recursion in Rd: xn+1 = xn + a(n) [yn + Mn+1] ; (2) where 8 n yn 2 H(xn) and H : Rd ! fsubsets of Rdg is a given Marchaud map. As a corollary to one of our main results, a natural generalization of the original Borkar and Meyn theorem is seen to follow. We also present two applications of our framework. First, we use our framework to provide a solution to the `approximate drift problem'. This problem can be stated as follows. When an experimenter runs a traditional stochastic approximation algorithm such as (1), the exact value of the drift h cannot be accurately calculated at every stage. In other words, the recursion run by the experimenter is given by (2), where yn is an approximation of h(xn) at stage n. A natural question arises: Do the errors due to approximations accumulate and wreak havoc with the long-term behavior (convergence) of the algorithm? Using our framework, we show the following: Suppose a stochastic approximation algorithm without errors can be guaranteed to be stable, then it's `approximate version' with errors is also stable, provided the errors are bounded at every stage. For the second application, we use our framework to relax the stability assumptions involved in the original Borkar-Meyn theorem, hence making the framework more applicable. It may be noted that the contents of Chapter 2 are based on [10]. Analysis of gradient descent methods with non-diminishing, bounded errors [9] Let us consider a continuously differentiable function f. Suppose we are interested in nding a minimizer of f, then a gradient descent (GD) scheme may be employed to nd a local minimum. Such a scheme is given by the following recursion in Rd: xn+1 = xn a(n)rf(xn): (3) GD is an important implementation tool for many machine learning algorithms, such as the backpropagation algorithm to train neural networks. For the sake of convenience, experimenters often employ gradient estimators such as Kiefer-Wolfowitz estimator, simultaneous perturbation stochastic approximation, etc. These estimators provide an estimate of the gradient rf(xn) at stage n. Since these estimators only provide an approximation of the true gradient, the experimenter is essentially running the recursion given by (2), where yn is a `gradient estimate' at stage n. Such gradient methods with errors have been previously studied by Bertsekas and Tsitsiklis [5]. However, the assumptions involved are rather restrictive and hard to verify. In particular, the gradient-errors are required to vanish asymptotically at a prescribed rate. This may not hold true in many scenarios. In Chapter 3 of the thesis, the results of [5] are extended to GD with bounded, non-diminishing errors, given by the following recursion in Rd: xn+1 = xn a(n) [rf(xn) + (n)] ; (4) where k (n)k for some fixed > 0. As stated earlier, previous literature required k (n)k ! 0, as n ! 1, at a `prescribed rate'. Sufficient conditions are presented for both stability and convergence of (4). In other words, the conditions presented in Chapter 3 ensure that the errors `do not accumulate' and wreak havoc with the stability or convergence of GD. Further, we show that (4) converges to a small neighborhood of the minimum set, which in turn depends on the error-bound . To the best of our knowledge this is the first time that GD with bounded non-diminishing errors has been analyzed. As an application, we use our framework to present a simplified implementation of simultaneous perturbation stochastic approximation (SPSA), a popular gradient descent method introduced by Spall [13]. Traditional convergence-analysis of SPSA involves assumptions that `couple' the `sensitivity parameters' of SPSA and the step-sizes. These assumptions restrict the choice of step-sizes available to the experimenter. In the context of machine learning, the learning rate may be adversely affected. We present an implementation of SPSA using `constant sensitivity parameters', thereby `decoupling' the step-sizes and sensitivity parameters. Further, we show that SPSA with constant sensitivity parameters can be analyzed using our framework. Finally, we present experimental results to support our theory. It may be noted that contents of Chapter 3 are based on [9]. b(n) a(n) Stochastic recursive inclusions with two timescales [12] There are many scenarios wherein the traditional single timescale framework cannot be used to analyze the algorithm at hand. Consider for example, the adaptive heuristic critic approach to reinforcement learning, which requires a stationary value iteration (for a fixed policy) to be executed between two policy iterations. To analyze such schemes Borkar [6] introduced the two timescale framework, along with a set of sufficient conditions which guarantee their convergence. Perkins and Leslie [8] extended the framework of Borkar to include set-valued mean- fields. However, the assumptions involved were still very restrictive and not easily verifiable. In Chapter 4 of the thesis, we present a generalization of the aforementioned frameworks. The framework presented is more general when compared to the frameworks of [6] and [8], and the assumptions involved are easily verifiable. A SRI with two timescales is given by the following coupled iteration: xn+1 = xn + a(n) un + Mn1+1 ; (5) yn+1 = yn + b(n) vn + Mn2+1 ; (6) where xn 2 R d and yn 2 R k for all n 0; un 2 h(xn; yn) and vn 2 g(xn; yn) for all n 0, where h : Rd Rk ! fsubsets of Rdg and g : Rd Rk ! fsubsets of Rkg are two given Marchaud maps; fa(n)gn 0 and fb(n)gn 0 are the step-size sequences satisfying ! 0 as n ! 1; fMn1+1gn 0 and fMn2+1 gn 0 constitute the Martingale noise terms. Our main contribution is in the weakening of the key assumption that `couples' the behavior of the x and y iterates. As an application of our framework we analyze the two timescale algorithm which solves the `constrained Lagrangian dual optimization problem'. The problem can be stated as thus: Given two functions f : Rd ! R and g : Rd ! Rk, we want to minimize f(x) subject to the condition that g(x) 0. This problem can be stated in the following primal form: inf sup f(x) + T g(x) : (7) 2R 2R0 x d k Under strong duality, solving the above equation is equivalent to solving it's dual: sup inf f(x) + T g(x) : (8) 2Rk x2Rd 0 The corresponding two timescale algorithm to solve the dual is given by: xn+1 = xn a(n) rx f(xn) + nT g(xn) + Mn2+1 ; (9) n+1 = n + b(n) f(xn) + nT g(xn) + Mn1+1 : r We use our framework to show that (9) converges to a solution of the dual given by (8). Further, as a consequence of our framework, the class of objective and constraint functions, for which (9) can be analyzed, is greatly enlarged. It may be noted that the contents of Chapter 4 are based on [12]. Stochastic approximation driven by `controlled Markov' process and temporal difference learning [11] In the field of reinforcement learning, one encounters stochastic approximation algorithms that are driven by Markov processes. The groundwork for analyzing the long-term behavior of such algorithms was laid by Benveniste et. al. [4]. Borkar [7] extended the results of [4] to include algorithms driven by `controlled Markov' processes i.e., algorithms where the `state process' was in turn driven by a time varying `control' process. Another important extension was that multiple stationary distributions were allowed, see [7] for details. The convergence analysis of [7] assumed that the iterates were stable. In reinforcement learning applications, stability is a hard assumption to verify. Hence, the stability assumption poses a bottleneck when deploying the aforementioned framework for the analysis of reinforcement algorithms. In Chapter 5 of the thesis we present sufficient conditions for both stability and convergence of stochastic approximations driven by `controlled Markov' processes. As an application of our framework, sufficient conditions for stability of temporal difference (T D) learning algorithm, an important policy-evaluation method, are presented that are compatible with existing conditions for convergence. The conditions are weakened two-fold in that (a) the Markov process is no longer required to evolve in a finite state space and (b) the state process is not required to be ergodic under a given stationary policy. It may be noted that the contents of Chapter 5 are based on [11].
2

Information diffusion and opinion dynamics in social networks / Dissémination de l’information et dynamique des opinions dans les réseaux sociaux

Louzada Pinto, Julio Cesar 14 January 2016 (has links)
La dissémination d'information explore les chemins pris par l'information qui est transmise dans un réseau social, afin de comprendre et modéliser les relations entre les utilisateurs de ce réseau, ce qui permet une meilleur compréhension des relations humaines et leurs dynamique. Même si la priorité de ce travail soit théorique, en envisageant des aspects psychologiques et sociologiques des réseaux sociaux, les modèles de dissémination d'information sont aussi à la base de plusieurs applications concrètes, comme la maximisation d'influence, la prédication de liens, la découverte des noeuds influents, la détection des communautés, la détection des tendances, etc. Cette thèse est donc basée sur ces deux facettes de la dissémination d'information: nous développons d'abord des cadres théoriques mathématiquement solides pour étudier les relations entre les personnes et l'information, et dans un deuxième moment nous créons des outils responsables pour une exploration plus cohérente des liens cachés dans ces relations. Les outils théoriques développés ici sont les modèles de dynamique d'opinions et de dissémination d'information, où nous étudions le flot d'informations des utilisateurs dans les réseaux sociaux, et les outils pratiques développés ici sont un nouveau algorithme de détection de communautés et un nouveau algorithme de détection de tendances dans les réseaux sociaux / Our aim in this Ph. D. thesis is to study the diffusion of information as well as the opinion dynamics of users in social networks. Information diffusion models explore the paths taken by information being transmitted through a social network in order to understand and analyze the relationships between users in such network, leading to a better comprehension of human relations and dynamics. This thesis is based on both sides of information diffusion: first by developing mathematical theories and models to study the relationships between people and information, and in a second time by creating tools to better exploit the hidden patterns in these relationships. The theoretical tools developed in this thesis are opinion dynamics models and information diffusion models, where we study the information flow from users in social networks, and the practical tools developed in this thesis are a novel community detection algorithm and a novel trend detection algorithm. We start by introducing an opinion dynamics model in which agents interact with each other about several distinct opinions/contents. In our framework, agents do not exchange all their opinions with each other, they communicate about randomly chosen opinions at each time. We show, using stochastic approximation algorithms, that under mild assumptions this opinion dynamics algorithm converges as time increases, whose behavior is ruled by how users choose the opinions to broadcast at each time. We develop next a community detection algorithm which is a direct application of this opinion dynamics model: when agents broadcast the content they appreciate the most. Communities are thus formed, where they are defined as groups of users that appreciate mostly the same content. This algorithm, which is distributed by nature, has the remarkable property that the discovered communities can be studied from a solid mathematical standpoint. In addition to the theoretical advantage over heuristic community detection methods, the presented algorithm is able to accommodate weighted networks, parametric and nonparametric versions, with the discovery of overlapping communities a byproduct with no mathematical overhead. In a second part, we define a general framework to model information diffusion in social networks. The proposed framework takes into consideration not only the hidden interactions between users, but as well the interactions between contents and multiple social networks. It also accommodates dynamic networks and various temporal effects of the diffusion. This framework can be combined with topic modeling, for which several estimation techniques are derived, which are based on nonnegative tensor factorization techniques. Together with a dimensionality reduction argument, this techniques discover, in addition, the latent community structure of the users in the social networks. At last, we use one instance of the previous framework to develop a trend detection algorithm designed to find trendy topics in a social network. We take into consideration the interaction between users and topics, we formally define trendiness and derive trend indices for each topic being disseminated in the social network. These indices take into consideration the distance between the real broadcast intensity and the maximum expected broadcast intensity and the social network topology. The proposed trend detection algorithm uses stochastic control techniques in order calculate the trend indices, is fast and aggregates all the information of the broadcasts into a simple one-dimensional process, thus reducing its complexity and the quantity of necessary data to the detection. To the best of our knowledge, this is the first trend detection algorithm that is based solely on the individual performances of topics
3

Simulation Based Algorithms For Markov Decision Process And Stochastic Optimization

Abdulla, Mohammed Shahid 05 1900 (has links)
In Chapter 2, we propose several two-timescale simulation-based actor-critic algorithms for solution of infinite horizon Markov Decision Processes (MDPs) with finite state-space under the average cost criterion. On the slower timescale, all the algorithms perform a gradient search over corresponding policy spaces using two different Simultaneous Perturbation Stochastic Approximation (SPSA) gradient estimates. On the faster timescale, the differential cost function corresponding to a given stationary policy is updated and averaged for enhanced performance. A proof of convergence to a locally optimal policy is presented. Next, a memory efficient implementation using a feature-vector representation of the state-space and TD (0) learning along the faster timescale is discussed. A three-timescale simulation based algorithm for solution of infinite horizon discounted-cost MDPs via the Value Iteration approach is also proposed. An approximation of the Dynamic Programming operator T is applied to the value function iterates. A sketch of convergence explaining the dynamics of the algorithm using associated ODEs is presented. Numerical experiments on rate based flow control on a bottleneck node using a continuous-time queueing model are presented using the proposed algorithms. Next, in Chapter 3, we develop three simulation-based algorithms for finite-horizon MDPs (FHMDPs). The first algorithm is developed for finite state and compact action spaces while the other two are for finite state and finite action spaces. Convergence analysis is briefly sketched. We then concentrate on methods to mitigate the curse of dimensionality that affects FH-MDPs severely, as there is one probability transition matrix per stage. Two parametrized actor-critic algorithms for FHMDPs with compact action sets are proposed, the ‘critic’ in both algorithms learning the policy gradient. We show w.p1convergence to a set with the necessary condition for constrained optima. Further, a third algorithm for stochastic control of stopping time processes is presented. Numerical experiments with the proposed finite-horizon algorithms are shown for a problem of flow control in communication networks. Towards stochastic optimization, in Chapter 4, we propose five algorithms which are variants of SPSA. The original one measurement SPSA uses an estimate of the gradient of objective function L containing an additional bias term not seen in two-measurement SPSA. We propose a one-measurement algorithm that eliminates this bias, and has asymptotic convergence properties making for easier comparison with the two-measurement SPSA. The algorithm, under certain conditions, outperforms both forms of SPSA with the only overhead being the storage of a single measurement. We also propose a similar algorithm that uses perturbations obtained from normalized Hadamard matrices. The convergence w.p.1 of both algorithms is established. We extend measurement reuse to design three second-order SPSA algorithms, sketch the convergence analysis and present simulation results on an illustrative minimization problem. We then propose several stochastic approximation implementations for related algorithms in flow-control of communication networks, beginning with a discrete-time implementation of Kelly’s primal flow-control algorithm. Convergence with probability1 is shown, even in the presence of communication delays and stochastic effects seen in link congestion indications. Two relevant enhancements are then pursued :a) an implementation of the primal algorithm using second-order information, and b) an implementation where edge-routers rectify misbehaving flows. Also, discrete-time implementations of Kelly’s dual algorithm and primal-dual algorithm are proposed. Simulation results a) verifying the proposed algorithms and, b) comparing stability properties with an algorithm in the literature are presented.
4

Online Learning and Simulation Based Algorithms for Stochastic Optimization

Lakshmanan, K January 2012 (has links) (PDF)
In many optimization problems, the relationship between the objective and parameters is not known. The objective function itself may be stochastic such as a long-run average over some random cost samples. In such cases finding the gradient of the objective is not possible. It is in this setting that stochastic approximation algorithms are used. These algorithms use some estimates of the gradient and are stochastic in nature. Amongst gradient estimation techniques, Simultaneous Perturbation Stochastic Approximation (SPSA) and Smoothed Functional(SF) scheme are widely used. In this thesis we have proposed a novel multi-time scale quasi-Newton based smoothed functional (QN-SF) algorithm for unconstrained as well as constrained optimization. The algorithm uses the smoothed functional scheme for estimating the gradient and the quasi-Newton method to solve the optimization problem. The algorithm is shown to converge with probability one. We have also provided here experimental results on the problem of optimal routing in a multi-stage network of queues. Policies like Join the Shortest Queue or Least Work Left assume knowledge of the queue length values that can change rapidly or hard to estimate. If the only information available is the expected end-to-end delay as with our case, such policies cannot be used. The QN-SF based probabilistic routing algorithm uses only the total end-to-end delay for tuning the probabilities. We observe from the experiments that the QN-SF algorithm has better performance than the gradient and Jacobi versions of Newton based smoothed functional algorithms. Next we consider constrained routing in a similar queueing network. We extend the QN-SF algorithm to this case. We study the convergence behavior of the algorithm and observe that the constraints are satisfied at the point of convergence. We provide experimental results for the constrained routing setup as well. Next we study reinforcement learning algorithms which are useful for solving Markov Decision Process(MDP) when the precise information on transition probabilities is not known. When the state, and action sets are very large, it is not possible to store all the state-action tuples. In such cases, function approximators like neural networks have been used. The popular Q-learning algorithm is known to diverge when used with linear function approximation due to the ’off-policy’ problem. Hence developing stable learning algorithms when used with function approximation is an important problem. We present in this thesis a variant of Q-learning with linear function approximation that is based on two-timescale stochastic approximation. The Q-value parameters for a given policy in our algorithm are updated on the slower timescale while the policy parameters themselves are updated on the faster scale. We perform a gradient search in the space of policy parameters. Since the objective function and hence the gradient are not analytically known, we employ the efficient one-simulation simultaneous perturbation stochastic approximation(SPSA) gradient estimates that employ Hadamard matrix based deterministic perturbations. Our algorithm has the advantage that, unlike Q-learning, it does not suffer from high oscillations due to the off-policy problem when using function approximators. Whereas it is difficult to prove convergence of regular Q-learning with linear function approximation because of the off-policy problem, we prove that our algorithm which is on-policy is convergent. Numerical results on a multi-stage stochastic shortest path problem show that our algorithm exhibits significantly better performance and is more robust as compared to Q-learning. Future work would be to compare it with other policy-based reinforcement learning algorithms. Finally, we develop an online actor-critic reinforcement learning algorithm with function approximation for a problem of control under inequality constraints. We consider the long-run average cost Markov decision process(MDP) framework in which both the objective and the constraint functions are suitable policy-dependent long-run averages of certain sample path functions. The Lagrange multiplier method is used to handle the inequality constraints. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal solution. We also provide the results of numerical experiments on a problem of routing in a multistage queueing network with constraints on long-run average queue lengths. We observe that our algorithm exhibits good performance on this setting and converges to a feasible point.

Page generated in 0.119 seconds