Spelling suggestions: "subject:"stochastic crinite Element"" "subject:"stochastic cofinite Element""
1 |
Stochastic Finite Element Method for the Modeling of Thermoelastic Damping in Micro-ResonatorsLepage, Séverine 16 March 2007 (has links)
Abstract
Micro-electromechanical systems (MEMS) are subject to inevitable and inherent uncertainties in their dimensional and material parameters. Those lead to variability in their performance and reliability. Manufacturing processes leave substantial variability in the shape and geometry of the device due to its small dimensions and high feature complexity, while the material properties of a component are inherently subject to scattering. The effects of these variations have to be considered and a modeling methodology is needed in order to ensure required MEMS performance under uncertainties.
Furthermore, in the design of high-Q micro-resonators, dissipation mechanisms may have detrimental effects on the quality factor (Q). One of the major dissipation phenomena to consider is thermoelastic damping, so that performances are directly related to the thermoelastic quality factor, which has to be predicted accurately.
The purpose of this research is to develop a numerical method to analyze the effects of geometric and material property random variations on the thermoelastic quality factor of micro-resonators. The extension of the Perturbation Stochastic Finite Element Method (PSFEM) to the analysis of strongly coupled multiphysic phenomena allows the quantification of the influence of uncertainties, making available a new efficient numerical tool to MEMS designers.
Résumé
Dans le domaine des microsystèmes électromécaniques (MEMS), les micro-résonateurs jouent un rôle important pour le développement de micro-capteurs de plus en plus précis (ex : micro-accéléromètres). Dans cette optique daugmentation de la précision, les pertes dénergie qui limitent les performances des micro-résonateurs doivent être identifiées et quantifiées. Le facteur limitant des micro-résonateurs actuels est leur facteur de qualité thermo-élastique, qui doit donc être prédit de manière précise.
De plus, suite à la tendance actuelle de miniaturisation et complexification accrues des MEMS, les sources de dispersions sont très nombreuses, à la fois sur les constantes physiques des matériaux utilisés et sur les paramètres géométriques. La mise au point doutils numériques permettant de prendre en compte les incertitudes de manière efficace est donc primordiale afin daméliorer les prestations densemble du microsystème et dassurer un certain niveau de robustesse et de fiabilité.
Le but de cette recherche est de développer une méthode numérique pour analyser les effets des variations aléatoires des propriétés matérielles et géométriques sur le facteur de qualité thermo-élastique de micro-résonateurs. Pour ce faire, lapproche dite perturbative de la méthode des éléments finis stochastiques (PSFEM) est étendue à lanalyse de phénomènes multiphysiques fortement couplés, fournissant ainsi aux acteurs de lindustrie des MEMS un nouvel outil de conception efficace.
|
2 |
Stochastic Galerkin Model Updating of Randomly Distributed ParametersNizamiev, Kamil 10 May 2011 (has links)
No description available.
|
3 |
Methods on Probabilistic Structural Vibration using Stochastic Finite Element FrameworkSarkar, Soumyadipta January 2016 (has links) (PDF)
Analysis of vibration of systems with uncertainty in material properties under the influence of a random forcing function is an active area of research. Especially the characterization based on mode shapes and frequencies of linear vibrating systems leads to much discussed random eigenvalue problem, which repeatedly appears while analyzing a number of engineering systems. Such analyses with conventional schemes for significant variation of system parameters for large systems are often not viable because of the high computational costs involved. Appropriate tools to reduce the size of stochastic vibrating systems and efficient response calculation are yet to mature. Among the mathematical tools used in this case, polynomial chaos formulation of uncertainties shows promise. But this comes with the implementation issue of solving large systems of nonlinear equations arising from Bubnov-Galerking projection in the formulation. This dissertation reports the study of such dynamic systems with uncertainties characterized by the probability distribution of eigen solutions under a stochastic finite element framework.
In the context of structural vibration, the determination of appropriate modes to be considered in a stochastic framework is not straightforward. In this dissertation, at first the choice of dominant modes in stochastic framework is studied for vibration problems. A relative measure, based on the average energy contribution of each mode to the system, is developed. Further the interdependence of modes and the effect of the shape of the load on the choice of dominant modes are studied. Using these considerations, a hybrid algorithm is developed based on polynomial chaos framework for the response analysis of a structure with random mass and sickness and under the influence of random force. This is done by using modal truncation for response analysis with in a Monte Carlo loop. The algorithm is observed to be more efficient and achieves a high degree of accuracy compared to conventional techniques.
Considering the fact that the Monte Carlo loops within the above mentioned hybrid algorithm is easily parallelizable, the efficient implementation of it depends on the SFE solution. The set of nonlinear equations arising from polynomial chaos formulation is solved using matrix-free Newton’s iteration using GMRES as linear solver. Solution of a large system using a iterative method like GMRES necessitates the use of a good preconditioner. Keeping focus on the par-allelizability of the algorithm, a number of efficient but cheap-to-construct preconditioners are developed and the most effective among them is chosen. The solution process is parallelized for large systems. The scalability of solution process in conjunction with the preconditioner is studied in details.
|
4 |
Stochastic finite element method with simple random elementsStarkloff, Hans-Jörg 19 May 2008 (has links) (PDF)
We propose a variant of the stochastic finite element method, where the random
elements occuring in the problem formulation are approximated by simple random
elements, i.e. random elements with only a finite number of possible values.
|
5 |
Stochastic Analysis Of Flow And Solute Transport In Heterogeneous Porous Media Using Perturbation ApproachChaudhuri, Abhijit 01 1900 (has links)
Analysis of flow and solute transport problem in porous media are affected by uncertainty inbuilt both in boundary conditions and spatial variability in system parameters. The experimental investigation reveals that the parameters may vary in various scales by several orders. These affect the solute plume characteristics in field-scale problem and cause uncertainty in the prediction of concentration.
The main focus of the present thesis is to analyze the probabilistic behavior of solute concentration in three dimensional(3-D) heterogeneous porous media. The framework for the probabilistic analysis has been developed using perturbation approach for both spectral based analytical and finite element based numerical method. The results of the probabilistic analysis are presented either in terms of solute plume characteristics or prediction uncertainty of the concentration.
After providing a brief introduction on the role of stochastic analysis in subsurface hydrology in chapter 1, a detailed review of the literature is presented to establish the existing state-of-art in the research on the probabilistic analysis of flow and transport in simple and complex heterogeneous porous media in chapter 2. The literature review is mainly focused on the methods of solution of the stochastic differential equation.
Perturbation based spectral method is often used for probabilistic analysis of flow and solute transport problem. Using this analytical method a nonlocal equation is solved to derive the expression of the spatial plume moments. The spatial plume moments represent the solute movement, spreading in an average sense. In chapter 3 of the present thesis, local dispersivity if also assumed to be random space function along with hydraulic conductivity. For various correlation coefficients of the random parameters, the results in terms of the field scale effective dispersivity are presented to demonstrate the effect of local dispersivity variation in space. The randomness of local dispersivity is found to reduce the effective fields scale dispersivity. The transverse effective macrodispersivity is affected more than the longitudinal effective macrodispersivity due to random spatial variation of local dispersivity. The reduction in effective field scale longitudinal dispersivity is more for positive correlation coefficient.
The applicability of the analytical method, which is discussed in earlier chapter, is limited to the simple boundary conditions. The solution by spectral method in terms of statistical moments of concentration as a function of space and time, require higher dimensional integration. Perturbation based stochastic finite element method(SFEM) is an alternative method for performing probabilistic analysis of concentration. The use of this numerical method for performing probabilistic analysis of concentration. The use of this numerical method is non common in the literature of stochastic subsurface hydrology. The perturbation based SFEM which uses FEM for spatial discretization of the steady state flow and Laplace transform for the solute transport equation, is developed in chapter 4. The SFEM is formulated using Taylor series of the dependent variable upto second-order term. This results in second-order accurate mean and first-order accurate standard deviation of concentration. In this study the governing medium properties viz. hydraulic Conductivity, dispersivity, molecular diffusion, porosity, sorption coefficient and decay coefficient are considered to vary randomly in space. The accuracy of results and computational efficiency of the SFEM are compared with Monte Carle Simulation method(MCSM) for both I-D and 3-D problems. The comparison of results obtained hby SFEM and MCSM indicates that SFEM is capable in providing reasonably accurate mean and standard deviation of concentration.
The Laplace transform based SFEM is simpler and advantageous since it does not require any stability criteria for choosing the time step. However it is not applicable for nonlinear transport problems as well as unsteady flow conditions. In this situation, finite difference method is adopted for the time discretization. The first part of the Chapter 5, deals with the formulation of time domain SFEM for the linear solute transport problem. Later the SFEM is extended for a problem which involve uncertainty of both system parameters and boundary/source conditions. For the flow problem, the randomness in the boundary condition is attributed by the random spatial variation of recharge at the top of the domain. The random recharge is modeled using mean, standard deviation and 2-D spatial correlation function. It is observed that even for the deterministic recharge case, the behavior of prediction uncertainty of concentration in the space is affected significantly due to the variation of flow field. When the effect of randomness of recharge condition is included, the standard deviation of concentration increases further. For solute transport, the concentration input at the source is modeled as a time varying random process. Two types of random source at the source is modeled as a time varying random process. Two types of random source condition are considered, firstly the amount of solute mass released at uniform time interval is random and secondly the source is treated as a Poission process. For the case of multiple random mass releases, the stochastic response function due to stochastic system is obtained by using SFEM. Comparing the results for the two type of random sources, it sis found that the prediction uncertainty is more when it is modeled as a Poisson process.
The probabilistic analysis of nonlinear solute transport problem using MCSM is often requires large computational cost. The formulation of the alternative efficient method, SFEM, for nonlinear solute transport problem is presented in chapter 6. A general Langmuir-Freundlich isotherm is considered to model the equilibrium mass transfer between aqueous and sorbed phase. In the SFEM formulation, which uses the Taylor
Series expansion, the zeroth-order derivatives of concentration are obtained by solving nonlinear algebraic equation. The higher order derivatives are obtained by solving linear equation. During transport, the nonlinear sorbing solutes is characterized by sharp solute fronts with a traveling wave behavior. Due to this the prediction uncertainty is significantly higher. The comparison of accuracy and computational efficiency of SFEM with MCSM for I-D and 3-D problems, reveals that the performance of SFEM for nonlinear problem is good and similar to the linear problem.
In Chapter 7, the nonlinear SFEM is extended for probabilistic analysis of biodegrading solute, which is modeled by a set of PDEs coupled with nonlinear Monod type source/sink terms. In this study the biodegradation problem involves a single solute by a single class of microorganisms coupled with dynamic microbial growth is attempted using this methods. The temporal behavior of mean and standard deviation of substrate concentration are not monotonic, they show peaks before reaching lower steady state value. A comparison between the SFEM and MCSM for the mean and standard deviation of concentration is made for various stochastic cases of the I-D problem. In most of the cases the results compare reasonably well. The analysis of probabilistic behavior of substrate concentration for different correlation coefficient between the physical parameters(hydraulic conductivity, porosity, dispersivity and diffusion coefficient) and the biological parameters(maximum substrate utilization rate and the coefficient of cell decay) is performed. It is observed that the positive correlation between the two sets of parameters results in a lower mean and significantly higher standard deviation of substrate concentration.
In the previous chapters, the stochastic analysis pertaining to the prediction uncertainty of concentration has been presented for simple problem where the system parameters are modeled as statistically homogeneous random. The experimental investigations in a small watershed, point towards a complex in geological substratum. It has been observed through the 2-D electrical resistivity imaging that the interface between the layers of high conductive weathered zone and low conductive clay is very irregular and complex in nature. In chapter 8 a theoretical model based on stochastic approach is developed to stimulate the complex geological structure of the weathered zone, using the 2-D electrical image. The statistical parameters of hydraulic conductivity field are estimated using the data obtained from the Magnetic Resonance Sounding(MRS) method. Due to the large complexity in the distribution of weathered zone, the stochastic analysis of seepage flux has been carried out by using MCSM. A batter characterization of the domain based on sufficient experimental data and suitable model of the random conductivity field may help to use the efficient SFEM. The flow domain is modeled as (i) an unstructured random field consisting of a single material with spatial heterogeneity, and (ii) a structured random field using 2-D electrical imaging which is composed of two layers of different heterogeneous random hydraulic properties. The simulations show that the prediction uncertainty of seepage flux is comparatively less when structured modeling framework is used rather than the unstructured modeling.
At the end, in chapter 9 the important conclusions drawn from various chapters are summarized.
|
6 |
Contribuição aos métodos de redução de modelos de sistemas dinâmicos não lineares estocásticos / Contribution to the reduction methods applied to nonlinear dynamic stochastic systemsBelonsi, Marcelo H. 27 November 2017 (has links)
Este trabalho enfoca os procedimentos de modelagem por elementos finitos determinísticos e estocásticos de sistemas estruturais do tipo placas finas sujeitas a não linearidades distribuídas e discretas na presença de incertezas. Neste caso, o método de Newmark não linear combinado com o método de Newton-Raphson foi utilizado para resolução direta das equações do movimento e obtenção dos envelopes das respostas no tempo dos sistemas não lineares. Com o objetivo de reduzir o esforço computacional requerido para resolver os problemas não lineares, especialmente para os casos envolvendo a presença de incertezas, foi proposto o método modal enriquecido e o método das aproximações combinadas melhorado. No que diz respeito à consideração da inserção de incertezas no modelo determinístico optou-se pela construção de um modelo estocásticos do sistema com não linearidades distribuídas, utilizando-se para isto da técnica de discretização de campos aleatórios de Karhunen-Loève para sistemas bi-dimensionais. Já, para a obtenção das respostas dinâmicas aleatórias, foi utilizado o método de simulação Hyper-Cubo-Latino. Através dos vários exemplos de simulações com estruturas do tipo placas finas não amortecidas e amortecidas sujeitas a diferentes níveis de força e condições de contorno, pode-se ilustrar os desenvolvimentos abordados ao longo deste trabalho. Em particular, pode-se concluir sobre a eficiência e necessidade da utilização de métodos de redução para a avaliação dinâmica de sistemas não lineares, principalmente para sistemas não lineares mais complexos ou na presença de incertezas. Por fim, deve-se salientar a importância de se considerar as incertezas na análise e no projeto de sistemas não lineares para lidar com situações mais realísticas de interesse prático / This work is devoted to the deterministic and stochastic finite element modeling of thin flat plates under large displacements and subjected to geometric and discrete non-linearities. In order to solve the resulting non-linear equations of motion in the time-domain, the non-linear Newmark strategy combined with the Newton-Raphson method has been used herein. With the aim of reducing the computational cost required to solve the non-linear problems, especially for the cases in which the uncertainties are considered, the modal method based on the construction of an enriched reduction basis and an improved version of the combined approximations technique have been retained in the present study. With regard to the insertion of uncertainties in the deterministic model opted by the construction of a stochastic model of the system with no distributed linearity, using for this the Karhunen-Loève expansion technique in bi-dimensional form. In order to generate the envelopes of the dynamic responses of the non-linear systems in time-domain, it has been used the so-called Hyper-Cube-Latino. Based on the numerical simulations with plate structures subjected to various levels of excitation and boundary conditions it is possible to illustrate the methodology presented in this work. In particular, it can be concluded about the efficiency and necessity of performing efficient and accurate model reduction methods to deal with non-linear systems. Finally, it is also important to discuss about the interest in considering uncertainties in the analysis and design of non-linear systems in order to deal with more realistic non-linear situations / Tese (Doutorado)
|
7 |
Stochastic Dynamic Stiffness Method For Vibration And Energy Flow Analyses Of Skeletal StructuresAdhikari, Sondipon 07 1900 (has links) (PDF)
No description available.
|
8 |
Stochastic finite element method with simple random elementsStarkloff, Hans-Jörg 19 May 2008 (has links)
We propose a variant of the stochastic finite element method, where the random
elements occuring in the problem formulation are approximated by simple random
elements, i.e. random elements with only a finite number of possible values.
|
9 |
Explorative study for stochastic failure analysis of a roughened bi-material interface: implementation of the size sensitivity based perturbation methodFukasaku, Kotaro 24 May 2011 (has links)
In our age in which the use of electronic devices is expanding all over the world, their reliability and miniaturization have become very crucial. The thesis is based on the study of one of the most frequent failure mechanisms in semiconductor packages, the delamination of interface or the separation of two bonded materials, in order to improve their adhesion and a fortiori the reliability of microelectronic devices. It focuses on the metal (-oxide) / polymer interfaces because they cover 95% of all existing interfaces.
Since several years, research activities at mesoscopic scale (1-10µm) have proved that the more roughened the surface of the interface, i.e., presenting sharp asperities, the better the adhesion between these two materials. Because roughness exhibits extremely complex shapes, it is difficult to find a description that can be used for reliability analysis of interfaces. In order to investigate quantitatively the effect of roughness variation on adhesion properties, studies have been carried out involving analytical fracture mechanics; then numerical studies were conducted with Finite Element Analysis. Both were done in a deterministic way by assuming an ideal profile which is repeated periodically.
With the development of statistical and stochastic roughness representation on the one hand, and with the emergence of probabilistic fracture mechanics on the other, the present work adds a stochastic framework to the previous studies. In fact, one of the Stochastic Finite Element Methods, the Perturbation method is chosen for implementation, because it can investigate the effect of the geometric variations on the mechanical response such as displacement field. In addition, it can carry out at once what traditional Finite Element Analysis does with numerous simulations which require changing geometric parameters each time.
This method is developed analytically, then numerically by implementing a module in a Finite Element package MSc. Marc/Mentat. In order to get acquainted and to validate the implementation, the Perturbation method is applied analytically and numerically to the 3 point bending test on a beam problem, because the input of the Perturbation method in terms of roughness parameters is still being studied. The capabilities and limitations of the implementation are outlined.
Finally, recommendations for using the implementation and for furture work on roughness representation are discussed.
|
10 |
Vibration Analysis Of Structures Built Up Of Randomly Inhomogeneous Curved And Straight Beams Using Stochastic Dynamic Stiffness Matrix MethodGupta, Sayan 01 1900 (has links)
Uncertainties in load and system properties play a significant role in reliability analysis of vibrating structural systems. The subject of random vibrations has evolved over the last few decades to deal with uncertainties in external loads. A well developed body of literature now exists which documents the status of this subject. Studies on the influence of system property uncertainties on reliability of vibrating structures is, however, of more recent origin. Currently, the problem of dynamic response characterization of systems with parameter uncertainties has emerged as a subject of intensive research. The motivation for this research activity arises from the need for a more accurate assessment of the safety of important and high cost structures like nuclear plant installations, satellites and long span bridges. The importance of the problem also lies in understanding phenomena like mode localization in nearly periodic structures and deviant system behaviour at high frequencies. It is now well established that these phenomena are strongly influenced by spatial imperfections in the vibrating systems. Design codes, as of now, are unable to systematically address the influence of scatter and uncertainties. Therefore, there is a need to develop robust design algorithms based on the probabilistic description of the uncertainties, leading to safer, better and less over-killed designs.
Analysis of structures with parameter uncertainties is wrought with difficulties, which primarily arise because the response variables are nonlinearly related to the stochastic system parameters; this being true even when structures are idealized to display linear material and deformation characteristics. The problem is further compounded when nonlinear structural behaviour is included in the analysis. The analysis of systems with parameter uncertainties involves modeling of random fields for the system parameters, discretization of these random fields, solutions of stochastic differential and algebraic eigenvalue problems, inversion of random matrices and differential operators, and the characterization of random matrix products. It should be noted that the mathematical nature of many of these problems is substantially different from those which are encountered in the traditional random vibration analysis. The basic problem lies in obtaining the solution of partial differential equations with random coefficients which fluctuate in space. This has necessitated the development of methods and tools to deal with these newer class of problems. An example of this development is the generalization of the finite element methods of structural analysis to encompass problems of stochastic material and geometric characteristics.
The present thesis contributes to the development of methods and tools to deal with structural uncertainties in the analysis of vibrating structures. This study is a part of an ongoing research program in the Department, which is aimed at gaining insights into the behaviour of randomly parametered dynamical systems and to evolve computational methods to assess the reliability of large scale engineering structures. Recent studies conducted in the department in this direction, have resulted in the formulation of the stochastic dynamic stiffness matrix for straight Euler-Bernoulli beam elements and these results have been used to investigate the transient and the harmonic steady state response of simple built-up structures. In the present study, these earlier formulations are extended to derive the stochastic dynamic stiffness matrix for a more general beam element, namely, the curved Timoshenko beam element. Furthermore, the method has also been extended to study the mean and variance of the stationary response of built-up structures when excited by stationary stochastic forces. This thesis is organized into five chapters and four appendices.
The first chapter mainly contains a review of the developments in stochastic finite element method (SFEM). Also presented is a brief overview of the dynamics of curved beams and the essence of the dynamic stiffness matrix method. This discussion also covers issues pertaining to modeling rotary inertia and shear deformations in the study of curved beam dynamics. In the context of SFEM, suitability of different methods for modeling system uncertainties, depending on the type of problem, is discussed. The relative merits of several schemes of discretizing random fields, namely, local averaging, series expansions using orthogonal functions, weighted integral approach and the use of system Green functions, are highlighted. Many of the discretization schemes reported in the literature have been developed in the context of static problems. The advantages of using the dynamic stiffness matrix approach in conjunction with discretization schemes based on frequency dependent shape functions, are discussed. The review identifies the dynamic analysis of structures built-up of randomly parametered curved beams, using dynamic stiffness matrix method, as a problem requiring further research. The review also highlights the need for studies on the treatment of non-Gaussian nature of system parameters within the framework of stochastic finite element analysis and simulation
methods.
The problem of deterministic analysis of curved beam elements is considered first. Chapter 2 reports on the development of the dynamic stiffness matrix for a curved Timoshenko beam element. It is shown that when the beam is uniformly param-etered, the governing field equations can be solved in a closed form. These closed form solutions serve as the basis for the formulation of damping and frequency dependent shape functions which are subsequently employed in the thesis to develop the dynamic stiffness matrix of stochastically inhomogeneous, curved beams. On the other hand, when the beam properties vary spatially, the governing equations have spatially varying coefficients which discount the possibility of closed form solutions. A numerical scheme to deal with this problem is proposed. This consists of converting the governing set of boundary value problems into a larger class of equivalent initial value problems. This set of Initial value problems can be solved using numerical schemes to arrive at the element dynamic stiffness matrix. This algorithm forms the basis for Monte Carlo simulation studies on stochastic beams reported later in this thesis. Numerical results illustrating the formulations developed in this chapter are also presented. A satisfactory agreement of these results has been demonstrated with the corresponding results obtained from independent finite element code using normal mode expansions.
The formulation of the dynamic stiffness matrix for a curved, randomly in-homogeneous, Timoshenko beam element is considered in Chapter 3. The displacement fields are discretized using the frequency dependent shape functions derived in the previous chapter. These shape functions are defined with respect to a damped, uniformly
parametered beam element and hence are deterministic in nature. Lagrange's equations
are used to derive the 6x6 stochastic dynamic stiffness matrix of the beam element. In
this formulation, the system property random fields are implicitly discretized as a set of
damping and frequency dependent Weighted integrals. The results for a straight Timo-
shenko beam are obtained as a special case. Numerical examples on structures made up
of single curved/straight beam elements are presented. These examples also illustrate the characterization of the steady state response when excitations are modeled as stationary random processes. Issues related to ton-Gaussian features of the system in-homogeneities are also discussed. The analytical results are shown to agree satisfactorily with corresponding results from Monte Carlo simulations using 500 samples.
The dynamics of structures built-up of straight and curved random Tim-oshenko beams is studied in Chapter 4. First, the global stochastic dynamic stiffness matrix is assembled. Subsequently, it is inverted for calculating the mean and variance, of the steady state stochastic response of the structure when subjected to stationary random excitations. Neumann's expansion method is adopted for the inversion of the stochastic dynamic stiffness matrix. Questions on the treatment of the beam characteristics as non-Gaussian random fields, are addressed. It is shown that the implementation of Neumann's expansion method and Monte-Carlo simulation method place distinctive demands on strategy of modeling system parameters. The Neumann's expansion method, on one hand, requires the knowledge of higher order spectra of beam properties so that the non-Gaussian features of beam parameters are reflected in the analysis. On the other hand, simulation based methods require the knowledge of the range of the stochastic variations and details of the probability density functions. The expediency of implementing Gaussian closure approximation in evaluating contributions from higher order terms in the Neumann expansion is discussed. Illustrative numerical examples comparing analytical and Monte-Carlo simulations are presented and the analytical solutions are found to agree favourably with the simulation results. This agreement lends credence to the various approximations involved in discretizing the random fields and inverting the global dynamic stiffness matrix. A few pointers as to how the methods developed in the thesis can be used in assessing the reliability of these structures are also given.
A brief summary of contributions made in the thesis together with a few suggestions for further research are presented in Chapter 5.
Appendix A describes the models of non-Gaussian random fields employed in the numerical examples considered in this thesis. Detailed expressions for the elements of the covariance matrix of the weighted integrals for the numerical example considered in Chapter 5, are presented in Appendix B; A copy of the paper, which has been accepted for publication in the proceedings of IUTAM symposium on 'Nonlinearity and Stochasticity in Structural Mechanics' has been included as Appendix C.
|
Page generated in 0.1125 seconds