Spelling suggestions: "subject:"stochastic learning"" "subject:"ctochastic learning""
1 |
Intelligent Navigation of Autonomous Vehicles in an Automated Highway System: Learning Methods and Interacting Vehicles ApproachUnsal, Cem 29 January 1997 (has links)
One of today's most serious social, economical and environmental problems is traffic congestion. In addition to the financial cost of the problem, the number of traffic related injuries and casualties is very high. A recently considered approach to increase safety while reducing congestion and improving driving conditions is Automated Highway Systems (AHS).
The AHS will evolve from the present highway system to an intelligent vehicle/highway system that will incorporate communication, vehicle control and traffic management techniques to provide safe, fast and more efficient surface transportation. A key factor in AHS deployment is intelligent vehicle control. While the technology to safely maneuver the vehicles exists, the problem of making intelligent decisions to improve a single vehicle's travel time and safety while optimizing the overall traffic flow is still a stumbling block.
We propose an artificial intelligence technique called stochastic learning automata to design an intelligent vehicle path controller. Using the information obtained by on-board sensors and local communication modules, two automata are capable of learning the best possible (lateral and longitudinal) actions to avoid collisions. This learning method is capable of adapting to the automata environment resulting from unmodeled physical environment. Simulations for simultaneous lateral and longitudinal control of an autonomous vehicle provide encouraging results. Although the learning approach taken is capable of providing a safe decision, optimization of the overall traffic flow is also possible by studying the interaction of the vehicles.
The design of the adaptive vehicle path planner based on local information is then carried onto the interaction of multiple intelligent vehicles. By analyzing the situations consisting of conflicting desired vehicle paths, we extend our design by additional decision structures. The analysis of the situations and the design of the additional structures are made possible by the study of the interacting reward-penalty mechanisms in individual vehicles. The definition of the physical environment of a vehicle as a series of discrete state transitions associated with a "stationary automata environment" is the key to this analysis and to the design of the intelligent vehicle path controller.
This work was supported in part by the Center for Transportation Research and Virginia DOT under Smart Road project, by General Motors ITS Fellowship program, and by Naval Research Laboratory under grant no. N000114-93-1-G022. / Ph. D.
|
2 |
Fast Online Training of L1 Support Vector MachinesMelki, Gabriella A 01 January 2016 (has links)
This thesis proposes a novel experimental environment (non-linear stochastic gradient descent, NL-SGD), as well as a novel online learning algorithm (OL SVM), for solving a classic nonlinear Soft Margin L1 Support Vector Machine (SVM) problem using a Stochastic Gradient Descent (SGD) algorithm. The NL-SGD implementation has a unique method of random sampling and alpha calculations. The developed code produces a competitive accuracy and speed in comparison with the solutions of the Direct L2 SVM obtained by software for Minimal Norm SVM (MN-SVM) and Non-Negative Iterative Single Data Algorithm (NN-ISDA). The latter two algorithms have shown excellent performances on large datasets; which is why we chose to compare NL-SGD and OL SVM to them. All experiments have been done under strict double (nested) cross-validation, and the results are reported in terms of accuracy and CPU times. OL SVM has been implemented within MATLAB and is compared to the classic Sequential Minimal Optimization (SMO) algorithm implemented within MATLAB's solver, fitcsvm. The experiments with OL SVM have been done using k-fold cross-validation and the results reported in % error and % speedup of CPU Time.
|
3 |
Recurrent gaussian processes and robust dynamical modelingMattos, César Lincoln Cavalcante 25 August 2017 (has links)
MATTOS, C. L. C. Recurrent gaussian processes and robust dynamical modeling. 2017. 189 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Renato Vasconcelos (ppgeti@ufc.br) on 2017-09-09T02:26:38Z
No. of bitstreams: 1
2017_tes_clcmattos.pdf: 5961013 bytes, checksum: fc44d8b852e28fa0e1ebe0c87389c0da (MD5) / Rejected by Marlene Sousa (mmarlene@ufc.br), reason: Prezado César; Prezado Pedro: Existe uma orientação para que normalizemos as dissertações e teses da UFC, em suas paginas pré-textuais e lista de referencias, pelas regras da ABNT. Por esse motivo, sugerimos consultar o modelo de template, para ajudá-lo nesta tarefa, disponível em: http://www.biblioteca.ufc.br/educacao-de-usuarios/templates/
Vamos agora as correções sempre de acordo com o template:
1. A partir da folha de aprovação as informações devem ser em língua inglesa.
2. A dedicatória deve ter a distancia até o final da folha observado. Veja no guia www.bibliotecas.ufc.br
3. A epígrafe deve ter a distancia até o final da folha observado. Veja no guia www.bibliotecas.ufc.br
4. As palavras List of Figures, LIST OF ALGORITHMS, List of Tables, Não devem ter caixa delimitando e nem ser na cor vermelha.
5. O sumário Não deve ter caixa delimitando e nem ser na cor vermelha. Nas seções terciárias, os dígitos também ficam em itálico. Os Apêndices e seus títulos, devem ficar na mesma margem da Palavra Referencias e devem iniciar com APENDICE A - Seguido do titulo.
Após essas correções, enviaremos o nada consta por e-mail.
Att.
Marlene Rocha
mmarlene@ufc.br on 2017-09-11T13:44:25Z (GMT) / Submitted by Renato Vasconcelos (ppgeti@ufc.br) on 2017-09-11T20:04:00Z
No. of bitstreams: 1
2017_tes_clcmattos.pdf: 6102703 bytes, checksum: 34d9e125c70f66ca9c095e1bc6bfb7e7 (MD5) / Rejected by Marlene Sousa (mmarlene@ufc.br), reason: Lincoln, Falta apenas vc colocar no texto em português a palavra RESUMO (nesse caso não é traduzido pois se refere ao resumo em língua portuguesa) pois vc colocou ABSTRACT duas vezes para o texto em português e inglês. on 2017-09-12T11:06:29Z (GMT) / Submitted by Renato Vasconcelos (ppgeti@ufc.br) on 2017-09-12T14:05:11Z
No. of bitstreams: 1
2017_tes_clcmattos.pdf: 6102699 bytes, checksum: 0a85b8841d77f0685b1153ee8ede0d85 (MD5) / Approved for entry into archive by Marlene Sousa (mmarlene@ufc.br) on 2017-09-12T16:29:17Z (GMT) No. of bitstreams: 1
2017_tes_clcmattos.pdf: 6102699 bytes, checksum: 0a85b8841d77f0685b1153ee8ede0d85 (MD5) / Made available in DSpace on 2017-09-12T16:29:18Z (GMT). No. of bitstreams: 1
2017_tes_clcmattos.pdf: 6102699 bytes, checksum: 0a85b8841d77f0685b1153ee8ede0d85 (MD5)
Previous issue date: 2017-08-25 / The study of dynamical systems is widespread across several areas of knowledge. Sequential data is generated constantly by different phenomena, most of them we cannot explain by equations derived from known physical laws and structures. In such context, this thesis aims to tackle the task of nonlinear system identification, which builds models directly from sequential measurements. More specifically, we approach challenging scenarios, such as learning temporal relations from noisy data, data containing discrepant values (outliers) and large datasets. In the interface between statistics, computer science, data analysis and engineering lies the machine learning community, which brings powerful tools to find patterns from data and make predictions. In that sense, we follow methods based on Gaussian Processes (GP), a principled, practical, probabilistic approach to learning in kernel machines. We aim to exploit recent advances in general GP modeling to bring new contributions to the dynamical modeling exercise. Thus, we propose the novel family of Recurrent Gaussian Processes (RGPs) models and extend their concept to handle outlier-robust requirements and scalable stochastic learning. The hierarchical latent (non-observed) structure of those models impose intractabilities in the form of non-analytical expressions, which are handled with the derivation of new variational algorithms to perform approximate deterministic inference as an optimization problem. The presented solutions enable uncertainty propagation on both training and testing, with focus on free simulation. We comprehensively evaluate the proposed methods with both artificial and real system identification benchmarks, as well as other related dynamical settings. The obtained results indicate that the proposed approaches are competitive when compared to the state of the art in the aforementioned complicated setups and that GP-based dynamical modeling is a promising area of research. / O estudo dos sistemas dinâmicos encontra-se disseminado em várias áreas do conhecimento. Dados sequenciais são gerados constantemente por diversos fenômenos, a maioria deles não passíveis de serem explicados por equações derivadas de leis físicas e estruturas conhecidas. Nesse contexto, esta tese tem como objetivo abordar a tarefa de identificação de sistemas não lineares, por meio da qual são obtidos modelos diretamente a partir de observações sequenciais. Mais especificamente, nós abordamos cenários desafiadores, tais como o aprendizado de relações temporais a partir de dados ruidosos, dados contendo valores discrepantes (outliers) e grandes conjuntos de dados. Na interface entre estatísticas, ciência da computação, análise de dados e engenharia encontra-se a comunidade de aprendizagem de máquina, que fornece ferramentas poderosas para encontrar padrões a partir de dados e fazer previsões. Nesse sentido, seguimos métodos baseados em Processos Gaussianos (PGs), uma abordagem probabilística prática para a aprendizagem de máquinas de kernel. A partir de avanços recentes em modelagem geral baseada em PGs, introduzimos novas contribuições para o exercício de modelagem dinâmica. Desse modo, propomos a nova família de modelos de Processos Gaussianos Recorrentes (RGPs, da sigla em inglês) e estendemos seu conceito para lidar com requisitos de robustez a outliers e aprendizagem estocástica escalável. A estrutura hierárquica e latente (não-observada) desses modelos impõe expressões não- analíticas, que são resolvidas com a derivação de novos algoritmos variacionais para realizar inferência determinista aproximada como um problema de otimização. As soluções apresentadas permitem a propagação da incerteza tanto no treinamento quanto no teste, com foco em realizar simulação livre. Nós avaliamos em detalhe os métodos propostos com benchmarks artificiais e reais da área de identificação de sistemas, assim como outras tarefas envolvendo dados dinâmicos. Os resultados obtidos indicam que nossas propostas são competitivas quando comparadas ao estado da arte, mesmo nos cenários que apresentam as complicações supracitadas, e que a modelagem dinâmica baseada em PGs é uma área de pesquisa promissora.
|
4 |
Detecting and preventing the electronic transmission of illicit imagesIbrahim, Amin Abdurahman 01 April 2009 (has links)
The sexual exploitation of children remains a very serious problem and is rapidly increasing globally through the use of the Internet. This work focuses on the current methods employed by criminals to generate and distribute child pornography, the methods used by law enforcement agencies to deter them, and the drawbacks of currently used methods, as well as the surrounding legal and privacy issues. A proven method to detect the transmission of illicit images at the network layer is presented within this paper. With this research, it is now possible to actively filter illicit pornographic images as they are transmitted over the network layer in real-time. It is shown that a Stochastic Learning Weak Estimator learning algorithm and a Maximum Likelihood Estimator learning algorithm can be applied against Linear Classifiers to identify and filter illicit pornographic images. In this thesis, these two learning algorithms were combined with algorithms such as the Non-negative Vector Similarity Coefficient-based Distance algorithm, Euclidian Distance, and Weighted Euclidian Distance. Based upon this research, a prototype was developed using the abovementioned system, capable of performing classification on both compressed and uncompressed images. Experimental results showed that classification accuracies and the overhead of network-based approaches did have a significant effect on routing devices. All images used in our experiments were legal. No actual child pornography images were ever collected, seen, sought, or used.
|
5 |
Algorithmes basés sur la programmation DC et DCA pour l’apprentissage avec la parcimonie et l’apprentissage stochastique en grande dimension / DCA based algorithms for learning with sparsity in high dimensional setting and stochastical learningPhan, Duy Nhat 15 December 2016 (has links)
De nos jours, avec l'abondance croissante de données de très grande taille, les problèmes de classification de grande dimension ont été mis en évidence comme un challenge dans la communauté d'apprentissage automatique et ont beaucoup attiré l'attention des chercheurs dans le domaine. Au cours des dernières années, les techniques d'apprentissage avec la parcimonie et l'optimisation stochastique se sont prouvées être efficaces pour ce type de problèmes. Dans cette thèse, nous nous concentrons sur le développement des méthodes d'optimisation pour résoudre certaines classes de problèmes concernant ces deux sujets. Nos méthodes sont basées sur la programmation DC (Difference of Convex functions) et DCA (DC Algorithm) étant reconnues comme des outils puissants d'optimisation non convexe. La thèse est composée de trois parties. La première partie aborde le problème de la sélection des variables. La deuxième partie étudie le problème de la sélection de groupes de variables. La dernière partie de la thèse liée à l'apprentissage stochastique. Dans la première partie, nous commençons par la sélection des variables dans le problème discriminant de Fisher (Chapitre 2) et le problème de scoring optimal (Chapitre 3), qui sont les deux approches différentes pour la classification supervisée dans l'espace de grande dimension, dans lequel le nombre de variables est beaucoup plus grand que le nombre d'observations. Poursuivant cette étude, nous étudions la structure du problème d'estimation de matrice de covariance parcimonieuse et fournissons les quatre algorithmes appropriés basés sur la programmation DC et DCA (Chapitre 4). Deux applications en finance et en classification sont étudiées pour illustrer l'efficacité de nos méthodes. La deuxième partie étudie la L_p,0régularisation pour la sélection de groupes de variables (Chapitre 5). En utilisant une approximation DC de la L_p,0norme, nous prouvons que le problème approché, avec des paramètres appropriés, est équivalent au problème original. Considérant deux reformulations équivalentes du problème approché, nous développons différents algorithmes basés sur la programmation DC et DCA pour les résoudre. Comme applications, nous mettons en pratique nos méthodes pour la sélection de groupes de variables dans les problèmes de scoring optimal et d'estimation de multiples matrices de covariance. Dans la troisième partie de la thèse, nous introduisons un DCA stochastique pour des problèmes d'estimation des paramètres à grande échelle (Chapitre 6) dans lesquelles la fonction objectif est la somme d'une grande famille des fonctions non convexes. Comme une étude de cas, nous proposons un schéma DCA stochastique spécial pour le modèle loglinéaire incorporant des variables latentes / These days with the increasing abundance of data with high dimensionality, high dimensional classification problems have been highlighted as a challenge in machine learning community and have attracted a great deal of attention from researchers in the field. In recent years, sparse and stochastic learning techniques have been proven to be useful for this kind of problem. In this thesis, we focus on developing optimization approaches for solving some classes of optimization problems in these two topics. Our methods are based on DC (Difference of Convex functions) programming and DCA (DC Algorithms) which are wellknown as one of the most powerful tools in optimization. The thesis is composed of three parts. The first part tackles the issue of variable selection. The second part studies the problem of group variable selection. The final part of the thesis concerns the stochastic learning. In the first part, we start with the variable selection in the Fisher's discriminant problem (Chapter 2) and the optimal scoring problem (Chapter 3), which are two different approaches for the supervised classification in the high dimensional setting, in which the number of features is much larger than the number of observations. Continuing this study, we study the structure of the sparse covariance matrix estimation problem and propose four appropriate DCA based algorithms (Chapter 4). Two applications in finance and classification are conducted to illustrate the efficiency of our methods. The second part studies the L_p,0regularization for the group variable selection (Chapter 5). Using a DC approximation of the L_p,0norm, we indicate that the approximate problem is equivalent to the original problem with suitable parameters. Considering two equivalent reformulations of the approximate problem we develop DCA based algorithms to solve them. Regarding applications, we implement the proposed algorithms for group feature selection in optimal scoring problem and estimation problem of multiple covariance matrices. In the third part of the thesis, we introduce a stochastic DCA for large scale parameter estimation problems (Chapter 6) in which the objective function is a large sum of nonconvex components. As an application, we propose a special stochastic DCA for the loglinear model incorporating latent variables
|
Page generated in 0.0728 seconds