• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stockage par matériaux à changement de phase de l’énergie thermique rejetée par l’industrie à basse température / Storage by phase change materials of the thermal energy released by the industry at low temperature

Rigal, Sacha 02 February 2017 (has links)
Une grande quantité d’énergie est rejetée par l’industrie à bas niveau de température, en dessous de 200 °C. Afin d’améliorer le rendement énergétique global des procédés utilisés, il est envisageable de valoriser cette chaleur perdue appelée chaleur fatale. Cependant cette valorisation est souvent rendue difficile par la présence d’un décalage temporel entre le moment où l’énergie est rejetée et le moment auquel cette énergie pourrait être de nouveau utilisée. Associant de fortes capacités de stockage ainsi qu’une possible restitution d’énergie à température constante, la solution du stockage de l’énergie thermique par des Matériaux à Changement de Phase, appelés MCP, apparaît comme particulièrement attractive. Cependant, la mise en œuvre de ces systèmes de stockage se heurte à des verrous scientifiques et technologiques tant au niveau du matériau de stockage que du système mais également de son contrôle commande et de son insertion dans les procédés industriels.L’objectif de la thèse est de mettre au point un système de stockage par MCP solide-liquide dans deux gammes de température : 70-85 °C et 120-155 °C. La première correspond aux températures des réseaux de chaleurs ou des chauffages domestiques alors que la deuxième s’applique au préchauffage des procédés industriels déjà existants. La thèse vise à démontrer la faisabilité technique du système de stockage. Le travail s’articule autour de différentes tâches allant de la sélection et la caractérisation des MCP jusqu’à leur mise en œuvre dans un organe de stockage et la simulation numérique de la solution de stockage.Les MCP recensés dans la bibliographie à ces niveaux de températures ont été caractérisés finement par calorimétrie (DSC) afin de déterminer leurs propriétés thermo-physiques sur des échantillons de grade laboratoire. L’acide stéarique pour la gamme 70-85 °C et l’acide sébacique pour la gamme 120-155 °C ont été sélectionnés. Des analyses calorimétriques plus poussées sur le grade industriel de ces matériaux ont été réalisées avec notamment des analyses de vieillissement et de compatibilité avec leur encapsulation respective au sein d’un banc expérimental. Le prototype expérimental de stockage thermique a été dimensionné et conçu pour répondre aux sollicitations simulant les rejets et les demandes d’un procédé industriel. Ce banc d’essais est composé principalement de deux organes de stockage que sont une cuve cylindrique et un échangeur multitubulaire et d’un thermorégulateur servant à simuler le fonctionnement du procédé industriel. Dans l’échangeur multitubulaire, le MCP occupe toute le volume de la calandre tandis que le fluide caloporteur circule dans les tubes. La cuve, quant à elle, contient des capsules sphériques en polyoléfines dans lesquelles le MCP est confiné. Elle est traversée par le fluide caloporteur procédant aux échanges thermiques. Ces capsules sphériques appelées nodules ne peuvent supporter plus de 100 °C et sont exclusivement réservées pour la gamme basse température. Ainsi, l’acide stéarique a été confiné dans les nodules afin de remplir la cuve de stockage. L’acide sébacique a lui été intégré dans la calandre de l’échangeur multitubulaire. Les campagnes expérimentales réalisées ont montré la faisabilité de ces types de stockage. Enfin, un modèle numérique simulant les performances du module de stockage utilisant les MCP encapsulés a été réalisé. Il constitue la première étape d’un outil de simulation complet intégrant les briques technologiques du stockage latent. / A large amount of energy is rejected by the industry at low temperature level, below a temperature of 200 °C. In order to improve the overall energy efficiency of industrial processes, it is possible to re-use this waste heat. However, this energy recovery is often made difficult because of the time difference between the process step at which the energy is lost and the process step at which this energy could be reused. Combining high energy storage capabilities and a possible energy recovery at constant temperature, thermal storage solution by phase change materials (PCM) is particularly attractive. However, this storage systems implementation faces scientific and technologic obstacles concerning both the storage material and system but also its command system and its integration into industrial processes.This thesis aims to develop a thermal energy storage system using a solid-liquid PCM technology in two temperature ranges: 70-85 °C and 120-155 °C. The first one corresponds to temperatures of heating networks or domestic heating systems, while the second one could directly preheat existing industrial processes. The thesis aims to demonstrate the technical feasibility of the storage system. The purpose is divided into different tasks such as PCMs selection and characterization, PCM implementation in a storage system but also numerical simulation of the storage solution.PCM documented in the literature at those temperature ranges were characterized by Differential Scanning Calorimetry (DSC) in order to determine thermo physical properties on laboratory grade samples. Stearic acid for the 70-85 °C temperature range and sebacic acid for the 120-155 °C temperature range were selected. Deeper differential scanning calorimetry analyses were carried out on those industrial grade materials including material ageing process analyses and their compliance with their respective encapsulation within an experimental test bench.Thermal storage experimental prototype was designed in order to meet the demands simulating the rejects and needs of industrial processes. The test bench is mainly composed of two storage systems : a cylindrical tank, a multitubular exchanger and a thermoregulator used to simulate industrial process functioning. The PCM, while in the multitubular exchanger, fills up the whole volume of the shell whereas the heat transfer fluid flows in tubes. The tank, for its part, contains polyolefin spherical capsules in which the PCM is contained. The tank is crossed by the heat transfer fluid conducting heat exchanges. Those spherical capsules called nodules cannot be exposed to temperatures exceeding 100 °C and are exclusively reserved for the low temperatures range. Thus, stearic acid was confined in nodules so as to fill the storage tank. The sebacic acid was incorporated in the multitubular exchanger shell. Experimental campaigns carried out have demonstrated the feasibility of those storage types.
2

Stockage d’énergie thermique par matériaux à changements de phase adapté aux centrales solaires thermodynamiques / Thermal energy storage with phase change materials for concentrated solar power plants

Lomonaco, Adrien 22 September 2015 (has links)
Le travail présenté dans ce manuscrit concerne le développement d’un système de stockage thermique par chaleur latente pour les centrales solaires à concentration utilisant la génération directe de vapeur, et s’attache plus particulièrement la sélection et l’étude du matériau à changement de phase (MCP). Cette thèse a été réalisée dans le cadre du projet Stockage Thermique Appliqué à l’extension de pRoduction d’énergie Solaire thermodynamique (STARS) porté par le consortium composé d’AREVA Renouvelables, la société Hamon d’Hondt, l’institut CEA liten et les laboratoires IPNO, LPCS et LaTEP. Ce projet est accompagné par l’ADEME dans le cadre du programme énergies décarbonnées des investissements d’avenir.Le premier chapitre de ce manuscrit situe le contexte de l’étude en dressant un état de l’art des différents systèmes solaires à concentration existants et des différents moyens de stocker l’énergie pour ce type de technologie. Le projet STARS est ensuite présenté. Ce chapitre se termine par un descriptif des objectifs du travail de thèse. L’intégralité du processus de sélection du MCP, incluant le recensement des matériaux dans la littérature, la définition des critères de sélection et la caractérisation par calorimétrie différentielle à balayage des candidats les plus pertinents, est détaillée dans le chapitre II. À l’issue de ce travail, le choix du consortium se porte sur le nitrate de sodium, un sel inorganique possédant une température de fusion adaptée à la technologie d’AREVA et une densité de stockage importante. La poursuite de l’étude, concernant la stabilité thermique du MCP durant son utilisation en conditions industrielles, fait l’objet du chapitre III. Cette étude comporte une partie bibliographique permettant de mettre en évidence les problématiques liées à la dégradation thermique du matériau et à son comportement vis-à-vis des matériaux métalliques avec lesquels il sera amené à être en contact (échangeur de chaleur, cuve de stockage). La principale conséquence des phénomènes mis en évidence étant la réduction du nitrate de sodium en nitrite de sodium, l’étude de l’impact du taux de nitrite de sodium sur les propriétés thermiques du MCP a été réalisée. Les résultats de cette campagne expérimentale ont montré une diminution significative de la température de fusion et de la chaleur latente du MCP lorsque la proportion de nitrite de sodium croît. Afin d’étudier l’évolution de composition du MCP dans des conditions réelles de fonctionnement, un dispositif a été conçu spécifiquement pour reproduire des conditions de cyclage thermique en présence de métaux. L’étude menée à l’aide de ce dispositif a permis d’analyser la cinétique de réduction du nitrate de sodium en nitrite de sodium. Les résultats montrent que l’évolution de composition du MCP dans les conditions opératoires du projet est négligeable, garantissant la stabilité des propriétés thermiques de celui-ci au cours de son utilisation.Enfin, le dernier chapitre est consacré à l’étude de l’amélioration des transferts thermiques au sein du MCP. En effet, le nitrate de sodium possède une conductivité thermique faible, pouvant limiter la puissance des échanges de chaleur dans le système de stockage. En premier lieu, un état de l’art des solutions d’intensification des transferts dans le domaine du stockage par chaleur latente est dressé. Ce travail a permis de mettre en évidence que l’utilisation de composites à base de mousses métalliques constitue une voie pertinente d’amélioration des transferts. Ainsi une campagne expérimentale visant à évaluer les performances de tels composites a permis de mettre en évidence le potentiel de ce type de configuration. / The work presented in this manuscript concerns the development of a latent heat thermal energy storage system adapted to concentrated solar power plant using direct steam generation, and more particularly on the selection and the study of the Phase Change Material (PCM) used in this system. This thesis was performed within the framework of the STARS project (Stockage Thermique Appliqué à l’extension de pRoduction d’énergie Solaire thermodynamique) carried by the consortium of AREVA Renouvelables, Hamon d’Hondt company, CEA institute liten and laboratories IPNO, LPCS and LaTEP. This project is accompanied by ADEME under the énergies décarbonnées des investissements d’avenir program. The first chapter of this manuscript sets up the context of this study by drawing a state of art of different existing CSP technologies and various ways to store energy for this kind of systems. The STARS project is then described. This chapter ends with a description of the thesis objectives. The entire PCM selection process, including identification of materials in literature, definition of various criteria and thermal characterization by differential scanning calorimetry (DSC) of the most relevant candidates, is detailed in chapter II. This work leads to the selection of sodium nitrate by the consortium, an inorganic salt with a suitable melting temperature considering AREVA’s technology and a large storage density. The following work, concerning the thermal stability of the PCM under thermal cycling, is then presented in chapter III. This part includes a bibliographic study allowing to highlight issues related to thermal degradation of the PCM and its behavior regarding to metallic material with which it will have to be in contact (heat exchanger, storage tank). The main consequence of these phenomena is the reduction of sodium nitrate into sodium nitrite, and thus the impact of sodium nitrite fraction on the thermal properties of the PCM was studied. The results of this experimental work shows a significant reduction of the melting temperature and the latent heat as the fraction in sodium nitrite increases. To study the evolution of the PCM composition under real operating situation, a specific device was designed to replicate thermal cycling conditions in the presence of metals. This device was used to analyze the kinetics of reducing sodium nitrate into sodium nitrite. The results show that the changes in composition of the PCM in the project’s operating conditions are negligible, ensuring the stability of its thermal properties during its lifetime. The last chapter is devoted to the improvement of heat transfers within the PCM. Indeed, sodium nitrate has a low thermal conductivity which may limit the power of the heat exchange in the storage system. A state of art of available solutions for the intensification of thermal transfers concerning latent heat storage was done. This study highlighted that the use of composites based on metallic foams constitutes an effective way of improvement. Thus an experimental campaign was conducted to evaluate the performances of such composites, allowing to show the potential of this kind of configuration.

Page generated in 0.1138 seconds