Spelling suggestions: "subject:"stokes equations -- anumerical solutions"" "subject:"stokes equations -- bnumerical solutions""
21 |
Efficient solutions of 2-D incompressible steady laminar separated flowsMorrison, Joseph H. January 1986 (has links)
This thesis describes a simple efficient and robust numerical technique for solving two-dimensional incompressible laminar steady flows at moderate-to-high Reynolds numbers. The method uses an incremental multigrid method and an extrapolation procedure based on minimum residual concepts to accelerate the convergence rate of a robust block-line-Gauss-Seidel solver for the vorticity-stream function equations. Results are presented for the driven cavity flow problem using uniform and nonuniform grids and for the flow past a backward facing step in a channel. / M.S.
|
22 |
Viscous-inviscid interactions of dense gasesPark, Sang-Hyuk 11 May 2006 (has links)
The interaction of oblique shocks and oblique compression waves with a laminar boundary layer on an adiabatic flat plate is analyzed by solving the Navier-Stokes equations in conservation-law form numerically. The numerical scheme is based on the Beam and Warming’s implicit method with approximate factorization. We examine the flow of Bethe-Zel’dovich-Thompson (BZT) fluids at pressures and temperatures on the order of those of the thermodynamic critical point. A BZT fluid is a single-phase gas having specific heat so large that the fundamental derivative of gas dynamics, Γ, is negative over a finite range of pressures and temperatures. The equation of state is the well-known Martin-Hou equation. The main result is the demonstration that the natural dynamics of BZT fluids can suppress boundary layer separation. Physically, this suppression can be attributed to the decrease in adverse pressure gradients associated with the disintegration of compression discontinuities in BZT fluids. / Ph. D.
|
23 |
A new parabolized Navier-Stokes scheme for hypersonic reentry flowsBhutta, Bilal A. January 1985 (has links)
High Mach number, low-Reynolds number (high-altitude) reentry flowfield predictions are an important problem area in computational aerothermodynamics. Available numerical tools for handling such flows are very few and significantly limited in their applicability. A new implicit fully-iterative Parabolized Navier-Stokes (PNS) scheme is developed to accurately predict such low-Reynolds number flows. In this new approach the differential equations governing the conservation of mass, momentum and energy, and the algebraic equation of state for a perfect gas are solved simultaneously in a coupled manner. The idea is presented that by treating the governing equations in this manner (rather than eliminating the pressure terms in the governing equations by using appropriate differentiated forms of the equation of state) it may be possible to have an unconditionally time-like numerical scheme. The stability of a simplified version of this new PNS scheme is also studied, and it is demonstrated that these simplified equations are unconditionally time-like in the subsonic as well as the supersonic flow regions. A pseudo-time integration approach is used in addition to a new second-order accurate fully-implicit smoothing, to improve the efficiency of the solution algorithm.
The new PNS scheme is used to predict the flowfield around a seven-deg sphere-cone vehicle under high- and low-Reynolds number conditions. Two test case, Case A and Case B, are chosen such that Case A has a large freestream Reynolds number (2.92x10⁵), whereas Case B has a freestream Reynolds number of 1.72x10³, which is smaller than the usual limit of applicability of the non-iterative PNS schemes (Re~10⁴ or larger). Comparisons are made with other available numerical schemes, and the results substantiate the stability, accuracy and efficiency claims of the new Parabolized Navier-Stokes scheme. / Ph. D.
|
24 |
An analytical, phenomenological and numerical study of geophysical and magnetohydrodynamic turbulence in two dimensionsBlackbourn, Luke A. K. January 2013 (has links)
In this thesis I study a variety of two-dimensional turbulent systems using a mixed analytical, phenomenological and numerical approach. The systems under consideration are governed by the two-dimensional Navier-Stokes (2DNS), surface quasigeostrophic (SQG), alpha-turbulence and magnetohydrodynamic (MHD) equations. The main analytical focus is on the number of degrees of freedom of a given system, defined as the least value $N$ such that all $n$-dimensional ($n$ ≥ $N$) volume elements along a given trajectory contract during the course of evolution. By equating $N$ with the number of active Fourier-space modes, that is the number of modes in the inertial range, and assuming power-law spectra in the inertial range, the scaling of $N$ with the Reynolds number $Re$ allows bounds to be put on the exponent of the spectrum. This allows the recovery of analytic results that have until now only been derived phenomenologically, such as the $k$[superscript(-5/3)] energy spectrum in the energy inertial range in SQG turbulence. Phenomenologically I study the modal interactions that control the transfer of various conserved quantities. Among other results I show that in MHD dynamo triads (those converting kinetic into magnetic energy) are associated with a direct magnetic energy flux while anti-dynamo triads (those converting magnetic into kinetic energy) are associated with an inverse magnetic energy flux. As both dynamo and anti-dynamo interacting triads are integral parts of the direct energy transfer, the anti-dynamo inverse flux partially neutralises the dynamo direct flux, arguably resulting in relatively weak direct energy transfer and giving rise to dynamo saturation. These theoretical results are backed up by high resolution numerical simulations, out of which have emerged some new results such as the suggestion that for alpha turbulence the generalised enstrophy spectra are not closely approximated by those that have been derived phenomenologically, and new theories may be needed in order to explain them.
|
25 |
Direct numerical simulation and reduced chemical schemes for combustion of perfect and real gasesCoussement, Axel 27 January 2012 (has links)
La première partie de cette thèse traite du développement du code de simulation numérique directe YWC, principalement du développement des conditions aux limites. En effet, une forte contribution scientifique a été apportée aux conditions aux limites appelées "Three dimensional Navier-Stokes characteristic boundary condtions" (3D-NSCBC). Premièrement, la formulation de ces conditions aux arêtes et coins a été complétée, ensuite une extension de la formulation a été proposée pour supprimer les déformations observées en sortie dans le cas d'écoulements non-perpendiculaires à la frontière. <p>De plus, ces conditions ont été étendues au cas des gaz réels et une nouvelle définition du facteur de relaxation pour la pression a été proposée. Ce nouveau facteur de relaxation permet de supprimer les déformations observées en sortie pour des écoulements transcritiques. <p>Les résultats obtenus avec le code YWC ont ensuite été utilisés dans la seconde partie de la thèse pour développer une nouvelle méthode de tabulation basée sur l'analyse en composantes principales. Par rapport aux méthodes existante telles que FPI ou SLFM, la technique proposée, permet une identification automatique des variables à transporter et n'est, de plus, pas lié à un régime de combustion spécifique. Cette technique a permis d'effectuer des calculs d'interaction flamme-vortex en ne transportant que 5 espèces à la place des 9 requises pour le calcul en chimie détaillée complète, sans pour autant perdre en précision. <p>Finalement, dans le but de réduire encore le nombre d'espèces transportées, les techniques T-BAKED et HT-BAKED PCA ont été introduites. En utilisant une pondération des points sous-représentés, ces deux techniques permettent d'augmenter la précision de l'analyse par composantes principales dans le cadre des phénomènes de combustion.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
26 |
Multi-phase flows using discontinuous Galerkin methodsGryngarten, Leandro Damian 28 August 2012 (has links)
This thesis is concerned with the development of numerical techniques to simulate compressible multi-phase flows, in particular a high-accuracy numerical approach with mesh adaptivity. The Discontinuous Galerkin (DG) method was chosen as the framework for this work for being characterized for its high-order of accuracy -thus low numerical diffusion- and being compatible with mesh adaptivity due to its locality. A DG solver named DiGGIT (Discontinuous Galerkin at the Georgia Institute of Technology) has been developed and several aspects of the method have been studied. The Local Discontinuous Galerkin (LDG) method -an extension of DG for equations with high-order derivatives- was extended to solve multiphase flows using Diffused Interface Methods (DIM). This multi-phase model includes the convection of the volume fraction, which is treated as a Hamilton-Jacobi equation. This is the first study, to the author's knowledge, in which the volume fraction of a DIM is solved using the DG and the LDG methods. The formulation is independent of the Equation of State (EOS) and it can differ for each phase. This allows for a more accurate representation of the different fluids by using cubic EOSs, like the Peng-Robinson and the van der Waals models. Surface tension is modeled with a new numerical technique appropriate for LDG. Spurious oscillations due to surface tension are common to all the capturing schemes, and this new approach presents oscillations comparable in magnitude to the most common schemes. The moment limiter (ML) was generalized for non-uniform grids with hanging nodes that result from adaptive mesh refinement (AMR). The effect of characteristic, primitive, or conservative decomposition in the limiting stage was studied. The characteristic option cannot be used with the ML in multi-dimensions. In general, primitive variable decomposition is a better option than with conservative variables, particularly for multiphase flows, since the former type of decomposition reduces the numerical oscillations at material discontinuities. An additional limiting technique was introduced for DIM to preserve positivity while minimizing the numerical diffusion, which is especially important at the interface. The accuracy-preserving total variation diminishing (AP-TVD) marker for ``troubled-cell' detection, which uses an averaged-derivative basis, was modified to use the Legendre polynomial basis. Given that the latest basis is generally used for DG, the new approach avoids transforming to the averaged-derivative basis, what results in a more efficient technique.
Furthermore, a new error estimator was proposed to determine where to refine or coarsen the grid. This estimator was compared against other estimator used in the literature and it showed an improved performance. In order to provide equal order of accuracy in time as in space, the commonly used 3rd-order TVD Runge-Kutta (RK) scheme in the DG method was replaced in some cases by the Spectral Deferred Correction (SDC) technique. High orders in time were shown to only be required when the error in time is significant. For instance, convection-dominated compressible flows require for stability a time step much smaller than is required for accuracy, so in such cases 3rd-order TVD RK resulted to be more efficient than SDC with higher orders.
All these new capabilities were included in DiGGIT and have provided a generalized approach capable of solving sub- and super-critical flows at sub- and super-sonic speeds, using a high-order scheme in space and time, and with AMR.
Canonical test cases are presented to verify and validate the formulation in one, two, and three dimensions. Finally, the solver is applied to practical applications. Shock-bubble interaction is studied and the effect of the different thermodynamic closures is assessed. Interaction between single-drops and a wall is simulated. Sticking and the onset of splashing are observed. In addition, the solver is used to simulate turbulent flows, where the high-order of accuracy clearly shows its benefits. Finally, the methodology is challenged with the simulation of a liquid jet in cross flow.
|
27 |
Multidimensional upwind residual distribution schemes for the Euler and Navier-Stokes equations on unstructured gridsPaillere, Henri J. 29 June 1995 (has links)
<p align="justify">Une approche multidimensionelle pour la résolution numérique des équations d'Euler et de Navier-Stokes sur maillages non-structurés est proposée. Dans une première partie, un exposé complet des schémas de distribution, dits de "fluctuation-splitting" ,est décrit, comprenant une étude comparative des schémas décentrés, positifs et de 2ème ordre, pour résoudre l'équation de convection à coefficients constants, ainsi qu'une étude théorique et numérique de la précision des schémas sur maillages réguliers et distordus. L'extension à des lois de conservation non-linéaires est aussi abordée, et une attention particulière est portée au problème de la linéarisation conservative. Dans une deuxième partie, diverses discrétisations des termes visqueux pour l'équation de convection-diffusion sont développées, avec pour but de déterminer l'approche qui offre le meilleur compromis entre précision et coût. L'extension de la méthode aux systèmes des lois de conservation, et en particulier à celui des équations d'Euler de la dynamique des gaz, représente le noyau principal de la thèse, et est abordée dans la troisième partie. Contrairement aux schémas de distribution classiques, qui reposent sur une extension formelle du cas scalaire, l'approche développée ici repose sur une décomposition du résidu par élément en équations scalaires, modélisant le transport de variables caracteristiques. La difficulté vient du fait que les équations d'Euler instationnaires ne se diagonalisent pas, et admettent une infinité de solutions élémentaires (ondes simples) se propageant dans toutes les directions d'espace. En régime stationnaire, en revanche, les équations se diagonalisent complètement dans le cas des écoulements supersoniques, et partiellement dans le cas des écoulements subsoniques. Ainsi, les équations sous forme conservative peuvent être remplacées par un système équivalent comprenant deux équations totalement découplées, exprimant l'invariance de l'entropie et de l'enthalpie totale le long des lignes de courant, et deux autres équations, modélisant les effets purement acoustiques. En régime supersonique, celles-ci se découplent aussi, et expriment la convection le long des lignes de Mach d'invariants de Riemann généralisés. La discrétisation de ces équations par des schémas scalaires décentrés permet de simuler des écoulements continus et discontinus avec une grande précision et sans oscillations. Finalement, dans une dernière partie, l'extension aux équations de Navier-Stokes est abordée, et la discrétisation des termes visqueux par une approche éléments finis est proposée. Les résultats numériques confirment la précision et la robustesse de la méthode.</p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
|
Page generated in 0.1439 seconds