Spelling suggestions: "subject:"stokes problem"" "subject:"vstokes problem""
11 |
Homogenization of Optimal Control Problems in a Domain with Oscillating BoundaryRavi Prakash, * January 2013 (has links) (PDF)
Mathematical theory of homogenization of partial differential equations is relatively a new area of research (30-40 years or so) though the physical and engineering applications were well known. It has tremendous applications in various branches of engineering and science like : material science ,porous media, study of vibrations of thin structures, composite materials to name a few. There are at present various methods to study homogenization problems (basically asymptotic analysis) and there is a vast amount of literature in various directions. Homogenization arise in problems with oscillatory coefficients, domain with large number of perforations, domain with rough boundary and so on. The latter one has applications in fluid flow which is categorized as oscillating boundaries.
In fact ,in this thesis, we consider domains with oscillating boundaries. We plan to study to homogenization of certain optimal control problems with oscillating boundaries. This thesis contains 6 chapters including an introductory Chapter 1 and future proposal Chapter 6. Our main contribution contained in chapters 2-5. The oscillatory domain under consideration is a 3-dimensional cuboid (for simplicity) with a large number of pillars of length O(1) attached on one side, but with a small cross sectional area of order ε2 .As ε0, this gives a geometrical domain with oscillating boundary. We also consider 2-dimensional oscillatory domain which is a cross section of the above 3-dimensional domain.
In chapters 2 and 3, we consider the optimal control problem described by the Δ operator with two types of cost functionals, namely L2-cost functional and Dirichlet cost functional. We consider both distributed and boundary controls. The limit analysis was carried by considering the associated optimality system in which the adjoint states are introduced. But the main contribution in all the different cases(L2 and Dirichlet cost functionals, distributed and boundary controls) is the derivation of error estimates what is known as correctors in homogenization literature. Though there is a basic test function, one need to introduce different test functions to obtain correctors. Introducing correctors in homogenization is an important aspect of study which is indeed useful in the analysis, but important in numerical study as well.
The setup is the same in Chapter 4 as well. But here we consider Stokes’ Problem and study asymptotic analysis as well as corrector results. We obtain corrector results for velocity and pressure terms and also for its adjoint velocity and adjoint pressure. In Chapter 5, we consider a time dependent Kirchhoff-Love equation with the same domain with oscillating boundaries with a distributed control. The state equation is a fourth order hyperbolic type equation with associated L2-cost functional. We do not have corrector results in this chapter, but the limit cost functional is different and new. In the earlier chapters the limit cost functional were of the same type.
|
12 |
Extrapolation vectorielle et applications aux équations aux dérivées partielles / Vector extrapolation and applications to partial differential equationsDuminil, Sébastien 06 July 2012 (has links)
Nous nous intéressons, dans cette thèse, à l'étude des méthodes d'extrapolation polynômiales et à l'application de ces méthodes dans l'accélération de méthodes de points fixes pour des problèmes donnés. L'avantage de ces méthodes d'extrapolation est qu'elles utilisent uniquement une suite de vecteurs qui n'est pas forcément convergente, ou qui converge très lentement pour créer une nouvelle suite pouvant admettreune convergence quadratique. Le développement de méthodes cycliques permet, deplus, de limiter le coût de calculs et de stockage. Nous appliquons ces méthodes à la résolution des équations de Navier-Stokes stationnaires et incompressibles, à la résolution de la formulation Kohn-Sham de l'équation de Schrödinger et à la résolution d'équations elliptiques utilisant des méthodes multigrilles. Dans tous les cas, l'efficacité des méthodes d'extrapolation a été montrée.Nous montrons que lorsqu'elles sont appliquées à la résolution de systèmes linéaires, les méthodes d'extrapolation sont comparables aux méthodes de sous espaces de Krylov. En particulier, nous montrons l'équivalence entre la méthode MMPE et CMRH. Nous nous intéressons enfin, à la parallélisation de la méthode CMRH sur des processeurs à mémoire distribuée et à la recherche de préconditionneurs efficaces pour cette même méthode. / In this thesis, we study polynomial extrapolation methods. We discuss the design and implementation of these methods for computing solutions of fixed point methods. Extrapolation methods transform the original sequance into another sequence that converges to the same limit faster than the original one without having explicit knowledge of the sequence generator. Restarted methods permit to keep the storage requirement and the average of computational cost low. We apply these methods for computing steady state solutions of incompressible flow problems modelled by the Navier-Stokes equations, for solving the Schrödinger equation using the Kohn-Sham formulation and for solving elliptic equations using multigrid methods. In all cases, vector extrapolation methods have a useful role to play. We show that, when applied to linearly generated vector sequences, extrapolation methods are related to Krylov subspace methods. For example, we show that the MMPE approach is mathematically equivalent to CMRH method. We present an implementation of the CMRH iterative method suitable for parallel architectures with distributed memory. Finally, we present a preconditioned CMRH method.
|
13 |
Développement d’une méthode numérique pour les équations de Navier-Stokes en approximation anélastique : application aux instabilités de Rayleigh-Taylor / Developpement of a numerical method for Navier-Stokes equations in anelastic approximation : application to Rayleigh-Taylor instabilitiesHammouch, Zohra 30 May 2012 (has links)
L’approximation dite « anélastique » permet de filtrer les ondes acoustiques grâce à un développement asymptotique deséquations de Navier-Stokes, réduisant ainsi le pas en temps moyen, lors de la simulation numérique du développement d’instabilités hydrodynamiques. Ainsi, les équations anélastiques sont établies pour un mélange de deux fluides pour l’instabilité de Rayleigh-Taylor. La stabilité linéaire de l’écoulement est étudiée pour la première fois pour des fluides parfaits, par la méthode des modes normaux, dans le cadre de l’approximation anélastique. Le problème de Stokes issu des équations de Navier-Stokes sans les termes non linéaires (une partie de la poussée d’Archiméde est prise en compte) est défini ; l’éllipticité est démontrée, l’étude des modes propres et l’invariance liée à la pression sont détaillés. La méthode d’Uzawa est étendue à l’anélastique en mettant en évidence le découplage des vitesses en 3D, le cas particulier k = 0 et les modes parasites de pression. Le passage au multidomaine a permis d’établir les conditions de raccord (raccord Co de la pression sans condition aux limites physiques). Les algorithmes et l’implantation dans le code AMENOPHIS sont validés par les comparaisons de l’opérateur d’Uzawa développé en Fortran et à l’aide de Mathematica. De plus des résultats numériques ont été comparés à une expérience avec des fluides incompressibles. Finalement, une étude des solutions numériques obtenues avec les options anélastique et compressible a été menée. L’étude de l’influence de la stratification initiale des deux fluides sur le développement de l’instabilité de Rayleigh-Taylor est amorcée. / The « anelastic » approximation allows us to filter the acoustic waves thanks to an asymptotic development of the Navier-Stokes equations, so increasing the averaged time step, during the numerical simulation of hydrodynamic instabilitiesdevelopment. So, the anelastic equations for a two fluid mixture in case of Rayleigh-Taylor instability are established.The linear stability of Rayleigh-Taylor flow is studied, for the first time, for perfect fluids in the anelastic approximation.We define the Stokes problem resulting from Navier-Stokes equations without the non linear terms (a part of the buoyancyis considered) ; the ellipticity is demonstrated, the eigenmodes and the invariance related to the pressure are detailed.The Uzawa’s method is extended to the anelastic approximation and shows the decoupling speeds in 3D, the particular casek = 0 and the spurius modes of pressure. Passing to multidomain allowed to establish the transmission conditions.The algorithms and the implementation in the existing program are validated by comparing the Uzawa’s operator inFortran and Mathematica langages, to an experiment with incompressible fluids and results from anelastic and compressiblenumerical simulations. The study of the influence of the initial stratification of both fluids on the development of the Rayleigh-Taylor instability is initiated.
|
14 |
Hot Brownian MotionRings, Daniel 18 February 2013 (has links) (PDF)
The theory of Brownian motion is a cornerstone of modern physics. In this thesis, we introduce a nonequilibrium extension to this theory, namely an effective Markovian theory of the Brownian motion of a heated nanoparticle. This phenomenon belongs to the class of nonequilibrium steady states (NESS) and is characterized by spatially inhomogeneous temperature and viscosity fields extending in the solvent surrounding the nanoparticle.
The first chapter provides a pedagogic introduction to the subject and a concise summary of our main results and summarizes their implications for future developments and innovative applications.
The derivation of our main results is based on the theory of fluctuating hydrodynamics, which we introduce and extend to NESS conditions, in the second chapter. We derive the effective temperature and the effective friction coefficient for the generalized Langevin equation describing the Brownian motion of a heated nanoparticle. As major results, we find that these parameters obey a generalized Stokes–Einstein relation, and that, to first order in the temperature increment of the particle, the effective temperature is given in terms of a set of universal numbers.
In chapters three and four, these basic results are made explicit for various realizations of hot Brownian motion. We show in detail, that different degrees of freedom are governed by distinct effective parameters, and we calculate these for the rotational and translational motion of heated nanobeads and nanorods. Whenever possible, analytic results are provided, and numerically accurate approximation methods are devised otherwise.
To test and validate all our theoretical predictions, we present large-scale molecular dynamics simulations of a Lennard-Jones system, in chapter five. These implement a state-of-the-art GPU-powered parallel algorithm, contributed by D. Chakraborty. Further support for our theory comes from recent experimental observations of gold nanobeads and nanorods made in the the groups of F. Cichos and M. Orrit. We introduce the theoretical concept of PhoCS, an innovative technique which puts the selective heating of nanoscopic tracer particles to good use.
We conclude in chapter six with some preliminary results about the self-phoretic motion of so-called Janus particles. These two-faced hybrids with a hotter and a cooler side perform a persistent random walk with the persistence only limited by their hot rotational Brownian motion. Such particles could act as versatile laser-controlled nanotransporters or nanomachines, to mention just the most obvious future nanotechnological applications of hot Brownian motion.
|
15 |
Hot Brownian MotionRings, Daniel 19 December 2012 (has links)
The theory of Brownian motion is a cornerstone of modern physics. In this thesis, we introduce a nonequilibrium extension to this theory, namely an effective Markovian theory of the Brownian motion of a heated nanoparticle. This phenomenon belongs to the class of nonequilibrium steady states (NESS) and is characterized by spatially inhomogeneous temperature and viscosity fields extending in the solvent surrounding the nanoparticle.
The first chapter provides a pedagogic introduction to the subject and a concise summary of our main results and summarizes their implications for future developments and innovative applications.
The derivation of our main results is based on the theory of fluctuating hydrodynamics, which we introduce and extend to NESS conditions, in the second chapter. We derive the effective temperature and the effective friction coefficient for the generalized Langevin equation describing the Brownian motion of a heated nanoparticle. As major results, we find that these parameters obey a generalized Stokes–Einstein relation, and that, to first order in the temperature increment of the particle, the effective temperature is given in terms of a set of universal numbers.
In chapters three and four, these basic results are made explicit for various realizations of hot Brownian motion. We show in detail, that different degrees of freedom are governed by distinct effective parameters, and we calculate these for the rotational and translational motion of heated nanobeads and nanorods. Whenever possible, analytic results are provided, and numerically accurate approximation methods are devised otherwise.
To test and validate all our theoretical predictions, we present large-scale molecular dynamics simulations of a Lennard-Jones system, in chapter five. These implement a state-of-the-art GPU-powered parallel algorithm, contributed by D. Chakraborty. Further support for our theory comes from recent experimental observations of gold nanobeads and nanorods made in the the groups of F. Cichos and M. Orrit. We introduce the theoretical concept of PhoCS, an innovative technique which puts the selective heating of nanoscopic tracer particles to good use.
We conclude in chapter six with some preliminary results about the self-phoretic motion of so-called Janus particles. These two-faced hybrids with a hotter and a cooler side perform a persistent random walk with the persistence only limited by their hot rotational Brownian motion. Such particles could act as versatile laser-controlled nanotransporters or nanomachines, to mention just the most obvious future nanotechnological applications of hot Brownian motion.:1 Introduction and Overview
2 Theory of Hot Brownian Motion
3 Various Realizations of Hot Brownian Motion
4 Toy Model and Numerical Methods
5 From Experiments and Simulations to Applications
6 Conclusion and Outlook
|
Page generated in 0.0609 seconds