• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrochemistry, soil chemistry and critical loads of selected upland moorland catchments, Scotland

MacPhee, Kirsty Potts January 1997 (has links)
This thesis presents precipitation, streamwater and soil chemistry from three upland catchments in Scotland situated upon granite parent material and receiving different deposition loadings. Marine ions are identified as important components of precipitation and streamwater at the two coastal sites (Bealach and Cardoon) and lesser importance at the inland site (Allt a'Mharcaidh). Similar ratios of Na:Ca:Mg in precipitation and streamwater indicate the importance of catchment hydrology and organic soils in controlling streamwater chemistry. Input/output budgets indicate SO4-S and H+ loss from the Cardoon (a region of high acid deposition inputs) compared with the other two less polluted sites which exhibit SO4-S and H + retention. The SO4-S loss from the Cardoon is also associated with a high DOC flux in streamwater. In all three catchments differences were found between published critical load values and those calculated as part of this study. Seasonal and annual variations in critical loads for freshwaters at all sites indicate sampling for the national mapping exercise does not reflect the most acid-sensitive periods. Streamwater was also more sensitive than standing waters, with lower critical load values. Soil critical load values were lower than published soil critical load values as well as freshwater critical loads calculated in this study. Inclusion of marine-derived base-cations in PROFILE calculations of soil critical loads increased values markedly (1 keq ha-1yr -1) at the 2 coastal sites. Soil critical load varied little between horizons, suggesting that the identification of hydrologically important mineral horizon was not important. Lowest critical load values for freshwaters were controlled by the organic horizons which are not considered in PROFILE calculations. The implications of the omission of organic horizons from critical load calculations for soil in upland catchments are discussed and the use of critical loads at a catchment based level addressed.
2

Tracing the input and evolution of municipal water in springs and tributaries of the Bull Creek watershed, Austin, TX

Senison, Jeffery Joseph 28 October 2014 (has links)
The conservation of freshwater resources is fundamental in supporting modern society and preserving natural habitats and ecosystems. Deterioration of water quality in urban landscapes and loss of municipal water to leaky water distribution infrastructure are two substantial challenges to water-resource sustainability. I examine the geochemistry of streamwater, municipal water, wastewater, soil, and bedrock from the Bull Creek watershed, a rapidly urbanizing watershed in Austin, Texas, to achieve a better understanding of the processes of geochemical evolution as anthropogenically-sourced water recharges natural systems. Urbanization patterns in the Bull Creek watershed have created a contiguous expanse of urban development that covers roughly two thirds of the watershed, whereas the remaining third is rural, enabling direct comparison between urban and rural streamwater from a single watershed. Results indicate that Na, Cl, K, and SO₄ in urban springs and tributaries are elevated more than two-fold in comparison with rural springs and tributaries. A comparison of Sr concentration and Sr isotopic composition for spring and tributary samples indicates that municipal water and wastewater provide a substantial contribution to the urbanized stream branches of Bull Creek. This water is reactive in the subsurface after it leaks from the municipal system, evolving via a pathway of water-rock interaction with limestone. / text
3

Effects of broadleaf woodland cover on streamwater chemistry and risk assessments of streamwater acidification in acid-sensitive catchments in the UK

Gagkas, Zisis January 2007 (has links)
Acidification of surface waters has been recognised as the major water quality problem in the UK uplands. The adverse effects of conifer afforestation on streamwater chemistry and ecology are well documented in acid-sensitive catchments and have mainly been attributed to the enhanced deposition of atmospheric pollutants onto conifer canopies (the “scavenging effect”). Currently, international and national policies promote the expansion of native broadleaf woodland in the UK. Pollutant deposition onto broadleaf canopies is considered less than onto the more aerodynamically rough conifers, but there is concern that largescale broadleaf planting could delay the recovery of acidified waters or lead to further acidification in most sensitive areas. However, there has been limited investigation of the influence of broadleaf woodland cover on streamwater chemistry in the UK. To investigate the effect of woodland cover 14 catchments with different (0-78%) percentages of broadleaf woodland cover were identified in representative acidsensitive areas in north-western and central Scotland (Glen Arnisdale and Loch Katrine area) and northern and south-western England (Ullswater area and Devon) using spatial datasets in a GIS. Streamwater was sampled at high flow from the catchment outlets in winter and spring 2005 and 2006 and was analysed for major cations, anions and trace metals using standard methods. The number of samples ranged from two in the Glen Arnisdale catchments to 10 in the Loch Katrine area catchments which were sampled more intensively. Significant positive correlations were found between percentage broadleaf woodland cover and streamwater NO3 (rs = 0.51) and soluble Al (rs = 0.64) concentrations. The greater NO3 leaching to streamwater in the three most forested catchments (> 50%) was probably due to enhanced N deposition onto woodland canopies and nitrification by alder in the Ullswater area forested catchments. Streamwater NO3 concentrations equalled or exceeded non-marine SO4 in the above catchments indicating that NO3 was the principal excess acidifying ion in catchments with greater woodland cover. The woodland effect on streamwater chemistry in the study catchments was masked to some extent by variability in acid deposition climate and soil type composition. Seasalt inputs were found to be a more important control than woodland cover for streamwater chemistry in the maritime Glen Arnisdale catchments. A risk assessment of acid-sensitivity in the study catchments was conducted by calculating streamwater critical load exceedances using the Steady-State Water Chemistry (SSWC) and First-order Acidity Balance (FAB) models and modelled pollutant deposition for 1995-97 and 2002. Critical loads were exceeded by 0.01 to 1.74 keq H ha-1 yr-1 in two catchments which had woodland covers > 50% and in the Devon control catchment. The remaining 11 study catchments were assessed to be not at risk of acidification, probably due to significantly reduced non-marine S deposition from 1986 to 2001, but seasalt inputs to the Glen Arnisdale catchments might cause acidic streamwater episodes. Acid-sensitivity was also assessed using macroinvertebrates sampled in 11 of the study catchments and the results generally agreed with the critical load assessments. More detailed estimates of the enhancement of dry S and N deposition onto birchwoods in the Loch Katrine area catchments using calculated roughness length within FRAME showed that it posed no risk for streamwater acidification in these catchments because of the high rainfall environment. However, in acid-sensitive areas of the UK with lower rainfall and closer to major pollution sources, enhanced pollutant scavenging by broadleaf woodland canopies could pose a greater risk of acidification to freshwaters. The finding that almost all study catchments with woodland covers less than 30% are well protected from acidification suggests that this is a sensible threshold value for use in risk assessments of the effects of broadleaf woodland planting conducted within the Forests and Water Guidelines. The results of a sensitivity analysis of the Guidelines’ methodology, conducted using parameters such as numbers and timing of streamwater sampling, different runoff estimates and critical acid neutralising capacity values, showed that the Guidelines should be able to protect sensitive freshwaters from acidification in areas where broadleaf woodland is expanding.
4

Mixing model approaches to estimate storm flow sources in an overland flow-dominated tropical rain forest catchment

Elsenbeer, Helmut, Lorieri, Daniel, Bonell, Mike January 1995 (has links)
Previous hydrometric studies demonstrated the prevalence of overland flow as a hydrological pathway in the tropical rain forest catchment of South Creek, northeast Queensland. The purpose of this study was to consider this information in a mixing analysis with the aim of identifying sources of, and of estimating their contribution to, storm flow during two events in February 1993. K and acid-neutralizing capacity (ANC) were used as tracers because they provided the best separation of the potential sources, saturation overland flow, soil water from depths of 0.3, 0.6, and 1.2 m, and hillslope groundwater in a two-dimensional mixing plot. It was necessary to distinguish between saturation overland flow, generated at the soil surface and following unchanneled pathways, and overland flow in incised pathways. This latter type of overland flow was a mixture of saturation overland flow (event water) with high concentrations of K and a low ANC, soil water (preevent water) with low concentrations of K and a low ANC, and groundwater (preevent water) with low concentrations of K and a high ANC. The same sources explained the streamwater chemistry during the two events with strongly differing rainfall and antecedent moisture conditions. The contribution of saturation overland flow dominated the storm flow during the first, high-intensity, 178-mm event, while the contribution of soil water reached 50% during peak flow of the second, low-intensity, 44-mm event 5 days later. This latter result is remarkably similar to soil water contributions to storm flow in mountainous forested catchments of the southeastern United States. In terms of event and preevent water the storm flow hydrograph of the high-intensity event is dominated by event water and that of the low-intensity event by preevent water. This study highlights the problems of applying mixing analyses to overland flow-dominated catchments and soil environments with a poorly developed vertical chemical zonation and emphasizes the need for independent hydrometric information for a complete characterization of watershed hydrology and chemistry.
5

A GIS-based landscape analysis of dissolved organic carbon in boreal headwater streams

Andersson, Jan-Olov January 2009 (has links)
In boreal catchments, stream water chemistry is influenced and controlled by several landscape factors. The influence of spatially distributed variables is in turn dependent on the hydrological scale. Headwater streams have larger variability of water chemistry, and thus together represent a large biodiversity, and therefore need to be monitored in official environmental assessments. One objective of this study was, using Geographical Information Systems (GIS), to analyse co-variation between landscape variables and water chemistry and to determine which of the landscape variables have a major influence on the concentration of dissolved organic carbon (DOC) in headwater streams. Another objective was to find a simple method for predicting sources of DOC, using official map data and publically available GIS applications. Totally 85 headwater catchments (0.1-4 km2) in the county of Värmland, western south Sweden, were used in the study. Water chemistry was analysed for water sampled at low, medium and high flows, and landscape variables were extracted from official map data sources: topographic maps, a digital elevation model (DEM, 50 m grid), and vegetation data. Statistical analyses showed that topography (mean slope and mean topographic wetness index (TWI)) and wetland cover often correlated well with DOC in headwater catchments. Official map data could satisfactorily extract landscape variables (mean slope, mean TWI) that were useful in predicting stream water chemistry (DOC). A high-resolution elevation model, which was generated by interpolation of photogrammetric data, was used to calculate and evaluate two different wetness indices and their ability to predict the occurrence of wetlands in six catchments of different sizes and topography. The SAGA (System for Automated Geoscientific Analyses) wetness index (SWI) gave substantially better results than the TWI. The effects of resolution of DEMs on calculations of the SWI were investigated using 5, 10, 25 and 50 m grids. The results showed that SWI values increased with increasing cell size. The near linear increment of mean values for resolutions 10-50 m suggests a independence of terrain type and catchment size, which supported previous findings that indicated that mean slope and mean wetness index calculated from coarse elevation models may be used for prediction of DOC in headwater streams.
6

Streamwater and Sediment Chemistry of Ohio's Western Allegheny Plateau Ecoregion and their Relation to Aquatic Life

Amaning, Kwarteng, Jr 26 September 2006 (has links)
No description available.

Page generated in 0.0441 seconds