• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Use of wrinkles for fabrication of stretchable electrodes and omniphobic surfaces

Chan, Yuting January 2018 (has links)
The buckling of stiff film on a substrate had been of great interest as this response happen spontaneously and is self-organizing. This provides an unconventional, scalable and easy way to fabrication surfaces with tunable structures from the range of nanometers to micrometers. We optimized a process to fabricate stretchable electrodes by transferring wrinkled gold onto elastomer. We tested their electrochemical sensing functionality through detection of glucose concentration with or without strain. Results showed that the stretchable electrodes provide high sensitivity for the detection of glucose (860 ± 60 µA/mM.cm2), comparable to electrodes before transfer. The current detected was also consistent under strain. Investigation of the resistance indicates that the electrode configuration under strain is important as current running parallel to direction of strain is much more affected under tension. We also developed a fast and facile process to fabricate surfaces that consisted of wrinkles and nanoparticles. Using such surfaces, we tested the omniphobicity effect of hierarchical structures consisting of wrinkles and nanoparticles. Results show that all the fluorinated structured surfaces were hydrophobic, ranging from water contact angle of 125° for wrinkled surfaces to 155° for hierarchical surfaces. The surfaces that were either wrinkled or decorated with nanoparticles were oleophilic with low hexadecane contact angles (~26° and ~55° respectively). The combination of both structures achieved oleophobicity of more than 110°. The effectiveness of nanoparticles for low surface tension liquid were due to its re-entrant like structure. The omniphobic surfaces were also shown to be repellent to blood (>135°), making it a potential material for use medical devices. / Thesis / Master of Applied Science (MASc) / Wrinkling is a phenomenon often seen in real life, such as on the skin of a dried plum or human. It is possible to fabricate such wrinkles through having a stiff thin film adhered to an elastic foundation and compressing the foundation. The wrinkles are useful for fabrication of stretchable electrodes as their structure allows the film to stretch without breaking through unfolding. Here, we fabricated stretchable electrodes by transferring such wrinkled structures onto elastic foundation. These stretchable electrodes are shown to be able to detect the concentration of glucose in solution even when stretched. These electrodes are important for creating wearable devices that can monitor glucose levels or other substance continuously. Wrinkles also work as part of hierarchical structure which are helpful for trapping air beneath droplets of fluids. Here we incorporate wrinkles with nanoparticles which helps to make surfaces repellent to both water and oil. Such a function is important for self-cleaning surfaces and can also be used for patterning of surfaces for selective deposition of fluid.
2

Composites conducteurs polymères hautement déformables pour la récupération d’énergie houlomotrice / Conductive and highly stretchable polymer composites for wave energy harvesting

Iglesias, Sophie 23 April 2018 (has links)
Ces travaux de thèse ont porté sur l’élaboration d’électrodes déformables pour la récupération d’énergie houlomotrice. En effet, la conversion de l’énergie mécanique des vagues en électricité est possible via un système entièrement souple et basé sur la technologie des polymères électroactifs (ou EAP). Ces matériaux ont la capacité de se déformer sous stimuli électrique, d’où la nécessité de développer des matériaux conducteurs déformables. Le matériau EAP choisi pour l’étude est un élastomère silicone. La formulation de composites à matrice élastomère silicone chargée en particules conductrices carbonées (graphite, nanofeuillets de graphite et nanotubes de carbone) est ainsi la piste suivie pour composer des électrodes déformables. Deux méthodes de mélange, en voie fondu, ont été explorées. La première utilise un mélangeur planétaire, et la seconde utilise en plus un mélangeur tri-cylindre. L’influence sur les propriétés électriques des composites, de la méthode de mélange, de la nature de la charge conductrice ainsi du taux de charges, a été analysée. Aussi, l’étude de la percolation électrique ainsi que l’étude des mécanismes de conduction mis en jeux dans les différents composites ont été réalisées, et complétées par l’observation de la morphologie en microscopie optique et en microscopie électronique. Le comportement mécanique des composites en traction a également été analysé. Enfin, les propriétés couplées électro-mécaniques des composites les plus prometteurs ont été testées. Les mesures permettent de proposer une formulation à base de nanotubes de carbone comme électrode déformable. / This PhD work presents the development of stretchable electrodes for wave energy harvesting. Indeed, it is possible to convert the mechanical energy of the waves into electricity thanks to a flexible system based on electroactive polymer (EAP) technology. As EAPs have the ability to deform under electrical stimuli, deformable conductive materials are needed. In this study, the chosen EAP is a silicone elastomer. Composites formulated with silicone elastomer matrix filled with carbonaceous conductive particles (graphite, graphite nanoplatelets and carbon nanotubes) were thus developed. Two mixing methods, by melt compounding, have been explored. The first uses a planetary mixer, and the second uses a three roll-mill. The influence of the mixing method, the nature of the fillers and the filler rate on the electrical properties of the composites has been analyzed. The morphology, as well as the percolation and the conduction mechanisms have been studied. The tensile properties of the composites were also analyzed. Finally, the electromechanical coupled properties of the most promising composites were tested, allowing us to propose a formulation as a stretchable electrode.
3

Towards laser fabrication of soft neural electrodes

Schill, John January 2022 (has links)
Electronic devices define our everyday lives. They are often large, rigid, and brittle. Modern medical science has come so far as to start using miniature electronic devices to monitor many types of diseases. Especially, neurological disorders pose obstacles hard to overcome when treating them but it also motivates finding methods that allow for continuous monitoring. Implementing a small electronic device inside the human body adds requirements on the device to be stretchable, biocompatible, and more. Not only is the device limited by these factors, but also, current fabrication methods are not efficient for creating nanoscale versions for these types of devices. patterninglaser ablation is a growing field for cutting out and pattern nano-materialistic devices with high precision and good repeatability. This project is focused on using a laser engraving tool from metaquip on different substrates. This project is focused on the development of methods for laser fabrication of soft neural electrodes. The requiered steps are the alignment of samples to assure good precision when engraving it with the laser engraving tool, that also will be called “laserpatterner”, finding good parameters for cutting out devices and pattern conductors for said devices. On top of that, a linear force stretching will be used to characterize samples that were cut, in the form of strips, using the laserpatterner. The stretching behavior of strips consisting of the elastomer polydimethylsiloxane, which in turn will be the insulator for silver nanowires, is examined in the stretching setup. Parameter optimization is relevant in all experiments done in this project and lay the foundations for cutting and patterning silver nanowires devices. All factors included will eventually lead to a good method for fabricating soft neural electrode devices and this project is stepping stone towards that goal. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>

Page generated in 0.0617 seconds