• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-equilibrium aspects of the holographic duality / Aspectos da dualidade holográfica fora do equilíbrio

Silva, Giancarlo Thales Camilo da 16 February 2017 (has links)
This thesis is devoted to study far-from-equilibrium aspects of quantum systems at strong coupling using the holographic duality as a tool. The duality, originated from string theory and further generalized to broader scenarios, relates certain strongly coupled gauge theories to classical gravity theories in higher dimensions. Over the last years, it has proved itself useful as a calculational tool to map difficult questions of interest in the gauge theory into a dual (i.e., equivalent) problem in a higher-dimensional gravity language where the solution may become feasible. The interest in strongly coupled quantum field theories, in particular non-Abelian gauge theories, is motivated by a number of nuclear and condensed matter physics phenomena which are known to take place at a non-perturbative regime, such as the quark-gluon plasma phase of quantum chromodynamics or high-Tc superconducting materials. While dealing with strong coupling is typically a very hard task even at equilibrium, the situation becomes yet more dramatic when non-equilibrium setups are concerned since the main non-perturbative tool available nowadays lattice field theory suffers from serious problems when it comes to real-time dynamics. This is the reason why unconventional techniques such as the ones provided by holography are welcome. Of particular interest here are the problems of thermalization of strongly coupled plasmas as well as the quench dynamics of quantum systems, both of which admit a dual gravitational description involving time-dependent solutions to the corresponding classical equations of motion in the bulk of Anti de Sitter (AdS) spacetimes, such as collapsing solutions describing AdS black hole formation. Specifically, and always from a holographic point of view, in this thesis we deal with three classes of problems: the thermalization properties of a charged non-Abelian plasma after a sudden injection of energy (such as a heavy ion collision); the dynamics of a symmetry breaking quench process from a relativistic to a non-relativistic setup of the Lifshitz type with dynamical exponent z; and, finally, a new analytical approach to the non- equilibrium properties of conformal field theory plasmas placed in an expanding background. Apart from the specific problems, we also provide a self-contained but concise introduction to the holographic duality with a view towards newcomers with an elementary general relativity and quantum field theory background. / Esta tese designa-se ao estudo de sistemas quânticos fortemente acoplados e fora do equilíbrio utilizando como ferramenta a dualidade holográfica. A dualidade, originária da teoria de cordas e posteriormente generalizada a cenários mais abrangentes, relaciona certas teorias de calibre fortemente acopladas e teorias de gravidade clássica em dimensões mais altas. Nos últimos anos, ela tem se mostrado útil como uma ferramenta de cálculo para mapear questões complicadas na teoria de gauge em um problema \\q{dual} (isto é, equivalente) formulado na linguagem completamente diferente de gravidade em dimensões extras, onde obter uma solução pode ser viável. O interesse em teorias quânticas de campo fortemente acopladas, em particular teorias de calibre não-Abelianas, motiva-se por uma variedade de fenômenos das físicas nuclear e da matéria condensada que, reconhecidamente, ocorrem em um regime não-perturbativo, tais como o plasma de quarks e glúons da cromodinâmica quântica ou certos materiais supercondutores com temperatura crítica alta. Em geral, lidar com acoplamentos fortes é uma tarefa bastante complicada mesmo em configurações de equilíbrio, mas a situação se torna ainda mais dramática quando configurações longe do equilíbrio são tratadas, visto que a principal ferramenta não-perturbativa disponível atualmente (teoria de campos na rede) enfrenta sérios problemas em situações dinâmicas. Esta é a principal razão pela qual técnicas alternativas tais como as fornecidas pela dualidade holográfica são bem vindas. De particular interesse aqui são os problemas da termalização de plasmas fortemente acoplados bem como a dinâmica pós-\\emph{quench} de sistemas quânticos, ambos os quais admitem uma descrição gravitacional dual envolvendo soluções dependentes do tempo às correspondentes equações gravitacionais em espaços-tempo de Anti de Sitter (AdS), tais como soluções de colapso descrevendo a formação de buracos negros assintoticamente AdS. Especificamente, e sempre sob um ponto de vista holográfico, nesta tese lidamos com três tipos diferentes de problemas: a termalização de um plasma não-Abeliano carregado como resultado de uma injeção repentina de energia (tal como uma colisão de íons pesados); a dinâmica durante um processo de quebra da simetria relativística para uma simetria não-relativística do tipo Lifshitz com expoente dinâmico $z$; e, finalmente, uma nova abordagem analítica para tratar propriedades fora do equílibrio de plasmas conformes colocados em um fundo que se expande. Além de tais problemas específicos, este texto fornece também uma introdução sucinta e auto-contida à dualidade holográfica direcionada a um leitor com conhecimento elementar de relatividade geral e teoria quântica de campos.
2

Non-equilibrium aspects of the holographic duality / Aspectos da dualidade holográfica fora do equilíbrio

Giancarlo Thales Camilo da Silva 16 February 2017 (has links)
This thesis is devoted to study far-from-equilibrium aspects of quantum systems at strong coupling using the holographic duality as a tool. The duality, originated from string theory and further generalized to broader scenarios, relates certain strongly coupled gauge theories to classical gravity theories in higher dimensions. Over the last years, it has proved itself useful as a calculational tool to map difficult questions of interest in the gauge theory into a dual (i.e., equivalent) problem in a higher-dimensional gravity language where the solution may become feasible. The interest in strongly coupled quantum field theories, in particular non-Abelian gauge theories, is motivated by a number of nuclear and condensed matter physics phenomena which are known to take place at a non-perturbative regime, such as the quark-gluon plasma phase of quantum chromodynamics or high-Tc superconducting materials. While dealing with strong coupling is typically a very hard task even at equilibrium, the situation becomes yet more dramatic when non-equilibrium setups are concerned since the main non-perturbative tool available nowadays lattice field theory suffers from serious problems when it comes to real-time dynamics. This is the reason why unconventional techniques such as the ones provided by holography are welcome. Of particular interest here are the problems of thermalization of strongly coupled plasmas as well as the quench dynamics of quantum systems, both of which admit a dual gravitational description involving time-dependent solutions to the corresponding classical equations of motion in the bulk of Anti de Sitter (AdS) spacetimes, such as collapsing solutions describing AdS black hole formation. Specifically, and always from a holographic point of view, in this thesis we deal with three classes of problems: the thermalization properties of a charged non-Abelian plasma after a sudden injection of energy (such as a heavy ion collision); the dynamics of a symmetry breaking quench process from a relativistic to a non-relativistic setup of the Lifshitz type with dynamical exponent z; and, finally, a new analytical approach to the non- equilibrium properties of conformal field theory plasmas placed in an expanding background. Apart from the specific problems, we also provide a self-contained but concise introduction to the holographic duality with a view towards newcomers with an elementary general relativity and quantum field theory background. / Esta tese designa-se ao estudo de sistemas quânticos fortemente acoplados e fora do equilíbrio utilizando como ferramenta a dualidade holográfica. A dualidade, originária da teoria de cordas e posteriormente generalizada a cenários mais abrangentes, relaciona certas teorias de calibre fortemente acopladas e teorias de gravidade clássica em dimensões mais altas. Nos últimos anos, ela tem se mostrado útil como uma ferramenta de cálculo para mapear questões complicadas na teoria de gauge em um problema \\q{dual} (isto é, equivalente) formulado na linguagem completamente diferente de gravidade em dimensões extras, onde obter uma solução pode ser viável. O interesse em teorias quânticas de campo fortemente acopladas, em particular teorias de calibre não-Abelianas, motiva-se por uma variedade de fenômenos das físicas nuclear e da matéria condensada que, reconhecidamente, ocorrem em um regime não-perturbativo, tais como o plasma de quarks e glúons da cromodinâmica quântica ou certos materiais supercondutores com temperatura crítica alta. Em geral, lidar com acoplamentos fortes é uma tarefa bastante complicada mesmo em configurações de equilíbrio, mas a situação se torna ainda mais dramática quando configurações longe do equilíbrio são tratadas, visto que a principal ferramenta não-perturbativa disponível atualmente (teoria de campos na rede) enfrenta sérios problemas em situações dinâmicas. Esta é a principal razão pela qual técnicas alternativas tais como as fornecidas pela dualidade holográfica são bem vindas. De particular interesse aqui são os problemas da termalização de plasmas fortemente acoplados bem como a dinâmica pós-\\emph{quench} de sistemas quânticos, ambos os quais admitem uma descrição gravitacional dual envolvendo soluções dependentes do tempo às correspondentes equações gravitacionais em espaços-tempo de Anti de Sitter (AdS), tais como soluções de colapso descrevendo a formação de buracos negros assintoticamente AdS. Especificamente, e sempre sob um ponto de vista holográfico, nesta tese lidamos com três tipos diferentes de problemas: a termalização de um plasma não-Abeliano carregado como resultado de uma injeção repentina de energia (tal como uma colisão de íons pesados); a dinâmica durante um processo de quebra da simetria relativística para uma simetria não-relativística do tipo Lifshitz com expoente dinâmico $z$; e, finalmente, uma nova abordagem analítica para tratar propriedades fora do equílibrio de plasmas conformes colocados em um fundo que se expande. Além de tais problemas específicos, este texto fornece também uma introdução sucinta e auto-contida à dualidade holográfica direcionada a um leitor com conhecimento elementar de relatividade geral e teoria quântica de campos.
3

Electron screening and disorder-induced heating in ultracold neutral plasmas

Lyon, Mary Elizabeth 01 December 2011 (has links) (PDF)
Disorder-induced heating (DIH) is a nonequilibrium, ultrafast relaxation process that occurs when laser-cooled atoms are photoionized to make an ultracold plasma. Its effects dominate the ion motion during the first 100 ns of the plasma evolution. Using tools of atomic physics we study DIH with ns time resolution for different plasma densities and temperatures. By changing the frequency of the laser beam we use to probe the ions, we map out the time evolution of the velocity distribution. We can compare this to a fluorescence simulation in order to more clearly determine the relationship between the fluorescence signal and the velocity distribution. In this study we observe and characterize effects due to electron screening on the ions during the equilibration process.
4

Relaxationsprozesse in stark gekoppelten ultrakalten Plasmen

Bannasch, Georg 04 July 2013 (has links) (PDF)
Typischerweise sind Plasmen extrem heiß - diese hohen Energien sind nötig, um die Ionisationsschwelle der Atome zu überwinden und damit einen stabilen Plasmazustand zu gewährleisten. Folglich werden die physikalischen Eigenschaften dieser Plasmen für gewöhnlich durch die thermischen Energie der Plasmateilchen bestimmt, während Korrelationen zwischen den Ladungen eine untergeordnete Rolle spielen. Durch die rasanten Fortschritte auf dem Gebiet der ultrakalten Gase ist es jedoch ebenso möglich, Plasmen bei extrem tiefen Temperaturen zu erzeugen, indem lasergekühlte Atome photoionisiert werden. In diesen ultrakalten Plasmen (UKP) lassen sich aufgrund der niedrigen Temperaturen bereits deutliche Auswirkungen von Korrelationen beobachten, die zu gänzlich anderer Dynamik führen können als aus dem Bereich der heißen schwach gekoppelten Plasmen bekannt. Ähnliche Prozesse werden auch in dichten Plasmen beobachtet, in denen durch extrem kurzen Teilchenabstände die Wechselwirkungsenergie auch bei Temperaturen von über 10000 Kelvin die kinetische Energie dominiert. Dichte Plasmen spielen eine wichtige Rolle für technische Anwendungen wie die Trägheitsfusion. Im Gegensatz zu diesen dichten Plasmen realisieren UKP starke Korrelationen jedoch bei sehr viel geringen Dichten von ρ ∼ 10^9 cm^{−3} . Die daraus resultierende langsame Dynamik ist experimentell wesentlich besser zugänglich und macht diese System deshalb besonders interessant, um Korrelationseffekte in stark gekoppelten Plasmen zu studieren. Diese Arbeit beschäftigt sich mit Effekten von starken Korrelationen auf verschiedene Relaxationsprozesse, die insbesondere, aber nicht ausschließlich in UKP eine bedeutende Rolle spielen. Neben dem fundamentalen Interesse an diesen Prozessen gilt ein Augenmerk auch möglichen experimentellen Tests der getroffenen Vorhersagen. Da die Theorie der schwach gekoppelten Plasmen Korrelationen größtenteils vernachlässigt, ist sie im Regime der UKP nur eingeschränkt anwendbar. Zur Berücksichtigung der starken Korrelationen werden in dieser Arbeit umfangreiche molekulardynamischen Simulationen eingesetzt, die teilweise mit quantenmechanischen Beschreibungen kombiniert werden, um den in UKP relevanten atomphysikalischen Aspekten gerecht zu werden. Im Rahmen dieser Rechnungen wird zunächst die seit langem ungeklärte Frage der Atombildung bei tiefen Temperaturen beantwortet. Dieser Prozess ist für UKP besonders relevanten, da die Rekombination die Lebensdauer des Plasmas bestimmt. Die konventionelle Theorie für Rekombination basiert auf der Annahme von von isolierten Drei-Körper-Stößen. Die daraus resultierende Rate divergiert mit abnehmender Temperatur und verliert daher ihre Gültigkeit im ultrakalten Bereich. In dieser Arbeit wird die Beschreibung der Rekombination mit Hilfe aufwendiger Vielteilchen-Simulationen auf den stark gekoppelte Bereich ausgebaut. Hierbei zeigt sich, dass die Rekombinationsrate im Bereich tiefer Temperaturen auf einen konstanten Wert konvergiert, so dass das Problem der divergierenden Rate gelöst werden kann. Ein weiteres, seit langem kontrovers diskutiertes Problem, stellt die Relaxation aufgrund von elastischen Stößen in stark gekoppelten Plasmen dar. Auch hier gilt, dass die konventionelle Theorie für heiße Plasmen, die auf Landau und Spitzer zurückgeht, aufgrund der Vernachlässigung von Korrelationen im Regime starker Kopplung unzureichend wird. Bisher waren keine experimentellen Ergebnisse verfügbar, um die verschiedenen Vorschläge zur Erweiterung der Landau-Spitzer-Beschreibung auf den stark gekoppelten Bereich zu beurteilen. In enger Zusammenarbeit mit der Gruppe von Prof. T. C. Killian (Rice University, Houston, USA) können im Rahmen dieser Arbeit nun erstmals Relaxationsraten in stark gekoppelten Plasmen gemessen werden. Dazu wird mittels eines Pump-Probe-Verfahren die Relaxation der ionischen Geschwindigkeitsverteilung in UKP beobachtet. In dieser Arbeit konnte eine Methode zur Interpretation der experimentellen Daten entwickelt und durch semiklassische Simulationen der Parameterbereich enorm erweitert werden. Unsere Ergebnisse zeigen, dass die Landau-Spitzer-Theorie bereits bei geringen Kopplungsstärken deutliche Defizite aufweist und liefern erstmalig Vorhersagen im stark gekoppelten Bereich. Bei der Untersuchung der ionischen Relaxation wird deutlich, dass insbesondere experimentelle Ergebnisse bei hohen Kopplungsstärken von Interesse sind. Derzeit sind typische UKP-Experimente jedoch auf mäßige Kopplungsstärken limitiert. Ursache hierfür ist, dass das Plasma in einem Zustand weit entfernt vom Gleichgewicht erzeugt wird. Bei der Relaxation ins Gleichgewicht kommt es zu einer Ausbildung von Korrelationen und damit zu einer Umwandlung von potentieller in kinetische Energie. In dieser Arbeit wird deshalb ein neues Plasmaherstellungsverfahren vorgeschlagen, das für die Ionen dieses „Korrrelationsheizen“ stark unterdrücken kann. Durch eine kollektive Anregung kalter Atome in Rydberg-Zustände werden vor der Photoionsation der Atome Korrelationen im atomaren Gas induziert. Es wird gezeigt, dass diese Korrelationen durch eine selektive Ionisation der Rydberg-Atome mit Hilfe von Mikrowellen an das Plasma weitergegeben werden können. Dadurch verringert sich das Korrelationsheizen und eröffnet neue Perspektiven für Untersuchungen ultrakalter Plasmen tief im stark gekoppelten Regime.
5

液体中で帯電した微粒子による磁化強結合プラズマの研究

庄司, 多津男, 坂和, 洋一 11 1900 (has links)
科学研究費補助金 研究種目:基盤研究(C) 課題番号:11680482 研究代表者:庄司 多津男 研究期間:1999-2001年度
6

Relaxationsprozesse in stark gekoppelten ultrakalten Plasmen

Bannasch, Georg 01 March 2013 (has links)
Typischerweise sind Plasmen extrem heiß - diese hohen Energien sind nötig, um die Ionisationsschwelle der Atome zu überwinden und damit einen stabilen Plasmazustand zu gewährleisten. Folglich werden die physikalischen Eigenschaften dieser Plasmen für gewöhnlich durch die thermischen Energie der Plasmateilchen bestimmt, während Korrelationen zwischen den Ladungen eine untergeordnete Rolle spielen. Durch die rasanten Fortschritte auf dem Gebiet der ultrakalten Gase ist es jedoch ebenso möglich, Plasmen bei extrem tiefen Temperaturen zu erzeugen, indem lasergekühlte Atome photoionisiert werden. In diesen ultrakalten Plasmen (UKP) lassen sich aufgrund der niedrigen Temperaturen bereits deutliche Auswirkungen von Korrelationen beobachten, die zu gänzlich anderer Dynamik führen können als aus dem Bereich der heißen schwach gekoppelten Plasmen bekannt. Ähnliche Prozesse werden auch in dichten Plasmen beobachtet, in denen durch extrem kurzen Teilchenabstände die Wechselwirkungsenergie auch bei Temperaturen von über 10000 Kelvin die kinetische Energie dominiert. Dichte Plasmen spielen eine wichtige Rolle für technische Anwendungen wie die Trägheitsfusion. Im Gegensatz zu diesen dichten Plasmen realisieren UKP starke Korrelationen jedoch bei sehr viel geringen Dichten von ρ ∼ 10^9 cm^{−3} . Die daraus resultierende langsame Dynamik ist experimentell wesentlich besser zugänglich und macht diese System deshalb besonders interessant, um Korrelationseffekte in stark gekoppelten Plasmen zu studieren. Diese Arbeit beschäftigt sich mit Effekten von starken Korrelationen auf verschiedene Relaxationsprozesse, die insbesondere, aber nicht ausschließlich in UKP eine bedeutende Rolle spielen. Neben dem fundamentalen Interesse an diesen Prozessen gilt ein Augenmerk auch möglichen experimentellen Tests der getroffenen Vorhersagen. Da die Theorie der schwach gekoppelten Plasmen Korrelationen größtenteils vernachlässigt, ist sie im Regime der UKP nur eingeschränkt anwendbar. Zur Berücksichtigung der starken Korrelationen werden in dieser Arbeit umfangreiche molekulardynamischen Simulationen eingesetzt, die teilweise mit quantenmechanischen Beschreibungen kombiniert werden, um den in UKP relevanten atomphysikalischen Aspekten gerecht zu werden. Im Rahmen dieser Rechnungen wird zunächst die seit langem ungeklärte Frage der Atombildung bei tiefen Temperaturen beantwortet. Dieser Prozess ist für UKP besonders relevanten, da die Rekombination die Lebensdauer des Plasmas bestimmt. Die konventionelle Theorie für Rekombination basiert auf der Annahme von von isolierten Drei-Körper-Stößen. Die daraus resultierende Rate divergiert mit abnehmender Temperatur und verliert daher ihre Gültigkeit im ultrakalten Bereich. In dieser Arbeit wird die Beschreibung der Rekombination mit Hilfe aufwendiger Vielteilchen-Simulationen auf den stark gekoppelte Bereich ausgebaut. Hierbei zeigt sich, dass die Rekombinationsrate im Bereich tiefer Temperaturen auf einen konstanten Wert konvergiert, so dass das Problem der divergierenden Rate gelöst werden kann. Ein weiteres, seit langem kontrovers diskutiertes Problem, stellt die Relaxation aufgrund von elastischen Stößen in stark gekoppelten Plasmen dar. Auch hier gilt, dass die konventionelle Theorie für heiße Plasmen, die auf Landau und Spitzer zurückgeht, aufgrund der Vernachlässigung von Korrelationen im Regime starker Kopplung unzureichend wird. Bisher waren keine experimentellen Ergebnisse verfügbar, um die verschiedenen Vorschläge zur Erweiterung der Landau-Spitzer-Beschreibung auf den stark gekoppelten Bereich zu beurteilen. In enger Zusammenarbeit mit der Gruppe von Prof. T. C. Killian (Rice University, Houston, USA) können im Rahmen dieser Arbeit nun erstmals Relaxationsraten in stark gekoppelten Plasmen gemessen werden. Dazu wird mittels eines Pump-Probe-Verfahren die Relaxation der ionischen Geschwindigkeitsverteilung in UKP beobachtet. In dieser Arbeit konnte eine Methode zur Interpretation der experimentellen Daten entwickelt und durch semiklassische Simulationen der Parameterbereich enorm erweitert werden. Unsere Ergebnisse zeigen, dass die Landau-Spitzer-Theorie bereits bei geringen Kopplungsstärken deutliche Defizite aufweist und liefern erstmalig Vorhersagen im stark gekoppelten Bereich. Bei der Untersuchung der ionischen Relaxation wird deutlich, dass insbesondere experimentelle Ergebnisse bei hohen Kopplungsstärken von Interesse sind. Derzeit sind typische UKP-Experimente jedoch auf mäßige Kopplungsstärken limitiert. Ursache hierfür ist, dass das Plasma in einem Zustand weit entfernt vom Gleichgewicht erzeugt wird. Bei der Relaxation ins Gleichgewicht kommt es zu einer Ausbildung von Korrelationen und damit zu einer Umwandlung von potentieller in kinetische Energie. In dieser Arbeit wird deshalb ein neues Plasmaherstellungsverfahren vorgeschlagen, das für die Ionen dieses „Korrrelationsheizen“ stark unterdrücken kann. Durch eine kollektive Anregung kalter Atome in Rydberg-Zustände werden vor der Photoionsation der Atome Korrelationen im atomaren Gas induziert. Es wird gezeigt, dass diese Korrelationen durch eine selektive Ionisation der Rydberg-Atome mit Hilfe von Mikrowellen an das Plasma weitergegeben werden können. Dadurch verringert sich das Korrelationsheizen und eröffnet neue Perspektiven für Untersuchungen ultrakalter Plasmen tief im stark gekoppelten Regime.

Page generated in 0.0884 seconds