Spelling suggestions: "subject:"ctructural design"" "subject:"ctructural 1design""
241 |
Metodologias para o dimensionamento de placas de \"granitos\" em sistemas não-aderentes de fixação / Design methodology for non adherent covering systems with \"granite\" slabsMoreiras, Sérgio Trajano Franco 14 March 2014 (has links)
Os sistemas não aderentes de fixação com placas de \"granito\", em comparação com os métodos que empregam argamassas, exigem maior acuidade no projeto e uma avaliação estrutural criteriosa. As metodologias empregadas no país consideram apenas o parâmetro de resistência à tração na flexão na ruptura, não levando em conta outros parâmetros estruturais importantes. Para preencher esta lacuna, o presente trabalho propõe uma metodologia para dimensionamento de três sistemas não aderentes de fixação: fachadas ventiladas, pisos elevados e lajes estruturais. Três \"granitos\" brasileiros de alto valor comercial - Vermelho Capão Bonito (VCB), Preto São Gabriel (PSG) e Branco Desireé (BD) - foram submetidos a ensaios laboratoriais para a determinação do comportamento tensão versus deformação, da tensão de ruptura, dos deslocamentos verticais, do módulo de Young e do coeficiente de Poisson. Estes parâmetros foram empregados para o dimensionamento de fachadas ventiladas e de pisos elevados. Os modelos computacionais do programa STRAP foram calibrados com dados obtidos do monitoramento de protótipos de fachadas e de pisos elevados. Para fachadas ventiladas (placas de 60 x 100 cm) as espessuras calculadas foram de 30 mm para o VCB, de 25 mm para o PSG e de 55 mm para o BD. Para pisos elevados (placas de 60 x 60 cm) as espessuras foram de 35 mm para o VCB, de 30 mm para o PSG e de 35 mm para o BD. Os resultados sugerem que a especificação da espessura mínima de 20 mm, comumente usada em diversos projetos nacionais, não considera aspectos estruturais importantes. / Design on \"granite\" plates for non adherent covering systems, in comparison with mortar methods, needs a structural evaluation. The Brazilian design methodology considers only the breaking load bending tensile strength and do not consider another important structural characteristics. To fill this gap, this thesis presents a methodology for design on three \"granite\" plates for non adherent covering systems: ventilated façades, pedestal paving system and structural slab. Three Brazilian \"granites\" with great commercial acceptance - Capão Bonito Red (CBR), São Gabriel Black (SGB) and Desireé White (DW) were tested to obtain the strength versus strain behavior, the breaking load strength, the modulus of Young and the Poisson coefficient. To structural design this characteristics were applied in computational models, that were calibrated with tests data. The thickness calculated for ventilated façades (slab of 60 x 100 cm) is 30 mm for CBR, 25 mm for SGB and 55 mm for DW. The thickness calculated for pedestal paving system (slab of 60 x 60 cm) is 35 mm for CBR, 30 mm for SGB and 35 mm for DW. This results show that the thickness of 20mm applied for Brazilian practice design criteria do not consider important structural issues.
|
242 |
Análise de novo procedimento para o projeto estrutural de tubos de concreto enterrados / Analysis of new procedure for the structural design of buried concrete pipeFioranelli Junior, Anselmo 04 July 2005 (has links)
O procedimento usual no Brasil para o projeto de tubos de concreto enterrados é o procedimento de Marston-Spangler. Este trabalho avalia o comportamento deste procedimento com o procedimento padrão recomendado pela ASCE (American Society of Civil Engineer), denominado de SIDD (Standard Practice for Direct Design of Buried Precast Concrete Pipe Using Standard Installations). A ferramenta de análise dos dois procedimentos é o método dos elementos finitos, o programa SSCOMPPC. São feitas várias simulações numéricas das instalações submetidas às mesmas situações para que assim se possa avaliar o comportamento de cada umas delas. O trabalho conclui que a falta de parâmetros para a execução do procedimento da Marston-Spangler pode comprometer o comportamento desta. Quando comparado as classes de instalação de A a D de Marston-Spangler com as instalações padronizadas SIDD tipo 1 a 4, respectivamente, as instalações SIDD tipo 3 e 4 possuem uma melhor distribuição de esforços do que as instalações classe C e D. Quando comparado a forma de projeto habitual no Brasil, o método indireto do procedimento de Marston-Spangler, com o método direto, tem-se que o método direto acarreta numa grande economia de armadura. Esta economia para o procedimento padronizado SIDD vai de 81,1% a 97,1% de armadura, e em relação com o método direto para o procedimento SIDD a economia vai de 54,4% a 93,1%, para o caso de aterro de 3 m de altura e tubo de 1200 mm de diâmetro interno. Com esta economia e com os recursos computacionais disponíveis hoje, o cálculo pelo método direto é vantajoso. Na comparação dos procedimentos de Marston-Spangler com o procedimento padronizado SIDD, pelo método direto, o procedimento de Marston-Spangler leva vantagem na classe B, sendo que a instalação tipo 2 do SIDD acarreta num consumo em média de 72,5% a mais de armadura. Porém quando a classe C e classe D, que são as mais executadas, são comparadas com as instalações tipo 3 e tipo 4, as instalações tipo 3 e tipo 4 consomem menos armadura, em média consomem 43,8% e 55,6% menos armadura do que as instalações classe C e classe D, respectivamente. / The most popular procedure in Brazil for the buried concrete pipe design is the Marston-Spangler\'s procedure. This work compares the performance of the Marston-Spangler\'s procedure and SIDD (Standard Practice for Direct Design of Buried Precast Concrete Pipe Using Standard Installations), recommended by ASCE (American Society of Civil Engineer). This work uses the finite element method, using the software SSCOMPPC, to analyse the two procedures. It is made many diferent simulations using the finite element method to analyse the behaviour of each procedure. The work concludes that Marston-Spangler\'s procedure needs more paramether to define each class of instalation. When compared the classes A to D of the Marston-Spangler\'s procedure with the type 1 to type 4 of the SIDD procedure, the work concludes the type 3 and 4 have a bether performance compared to the classes C and D. When compared the most popular procedure in Brazil, the Marston-Spangler\'s procedure using the indirect method, with the direct method, the direct method has a better performance. The economy of reinforcemet goes from 81,6% to 97,1% using the SIDD procedure and goes from 54,4% to 93,1%, using the Marston-Spangler\'s procedure (direct design). With the computational resources avaliable today, the direct design is a great advantage. Comparing the procedures of Marston-Spangler and SIDD, using the direct method in both procedures, the class B of Marston-Spangler\'s procedure has a better performance compared to the type 2 of SIDD procedure. The economy of reinforcement for this case is 27,5%. But the type 3 and 4 have a better performance compared to the class C and D. On type 3 and 4 installations, the economy of reinforcement is 43,8% and 55,6% compared to classes C and D, respectively.
|
243 |
Análise do desempenho ambiental de estruturas de concreto armado: uso da avaliação do ciclo de vida (ACV) no processo decisório do dimensionamento / Analysis of the environmental performance of reinforced concrete structures: Use of Life Cycle Assessment (LCA) in decision-sizing processBento, Ricardo Couceiro 20 October 2016 (has links)
O concreto armado, sistema estrutural mais utilizado no mundo, consome grandes quantidades de matérias-primas, em sua maioria compostas por materiais não renováveis, além de enormes quantidades de água e depende de grande quantidade de energia para o seu beneficiamento, além de emissões de gases e produção de resíduos perigosos. As decisões de projeto, enter elas a localização das obras, a definição do produto a ser construído, o partido arquitetônico e a especificação de materiais e componentes, afetam diretamente o consumo de recursos naturais e de energia, tal consumo é afetado também pela otimização ou não da execução e pelo efeito global no seu entorno, sem falar nos impactos estéticos e urbanísticos mais amplos. O objetivo desta pesquisa foi avaliar o uso da metodologia da Avaliação do Ciclo de Vida (ACV) no auxílio da tomada de decisões em projetos estruturais de concreto armado, visando a melhoria do desempenho ambiental parte-se da hipótese de que é possível obter a melhoria por meio da análise, durante a fase de projeto, da utilização de diferentes classes de resistência do concreto, por meio de alterações (reduções) nas dimensões dos elementos estruturais bem como do consumo dos materiais componentes da estrutura. Discute-se primeiramente o conceito de desempenho ambiental, seguido do impacto ambiental da construção civil e seus materiais. Posteriormente foi apresentada a metodologia da ACV e sua aplicação na construção civil com uma revisão bibliográfica. O desenvolvimento experimental efetuado foi o projeto estrutural de edifício com 6 classes de resistência característica à compressão do concreto do grupo I de resistência, à partir da classe C25 até a C50. Os resultados apresentaram que s classes C40, C45 e C50 obtiveram os C25 até a C50. OS resultados apresentaram que as classes C40, C45 e C50 obtiveram os melhores resultados em quase todos os quesitos avaliados. Especificamente a C40 se apresentou como a melhor opção para a unidade funcional avaliada com o melhor desempenho. O desenvolvimento experimental demonstrou a viabilidade do uso da ACV neste tipo de avaliação porém verifica-se a carência de maiores informações para execução de inventários e metodologia dirigida à realidade brasileira. Por fim , foram fornecidas orientações a todos os agentes intervenientes no projeto estrutural e execução da obra com a finalidade de ser alcançado o melhor desempenho ambiental das estruturas de concreto armado. / The reinforced concrete, most widely used structural system in the world, which consumes large amounts of raw materials, mostly composed of non-renewable materials, and huge amounts of water, depends on lot of energy for its processing, and gas emissions and hazardous waste generation. design decisions, such as location of works, the product definition to be built, the architectural party and specification of materials and components directly affect the consumption of natural resources and energy, as well as the optimization or not the execution and overall effect on its surroundings, not to mention the broader aesthetic and urbanistic impact. The objective of this research was to evaluate the use of the methodology of Life Cycle Assessment (LCA) to aid decision-making in structural design of reinforced concrete in order to improve the environmental performance starting from the hypothesis that can- yield improvement by analyzing, during the design stage, the use of different grades of concrete strength through changes (decreases) the dimensions of structural elements as well as the consumption of the component materials of the structure. At work was first discussed the concept of environmental performance, followed by the environmental impact of construction and its materials. The methodology of LCA and its application in construction with a literature review was presented later. The experimental development was made the building structural design with 6 classes of resistance characteristic of the group I concrete compressive strength, the class from the C25 to C50. The results showed that the C40 classes, C45 and C50 have the best results almost all the variables evaluated and specifically the C40 presented as the best option for the functional unit evaluated with the best performance. Experimental development demonstrated the feasibility of using ACV in this type of evaluation but still in need of more information for the execution of inventories and methodology will run Brazilian reality. Finally they were provided guidance to all actors involved in the structural design and execution of the work in order to be achieved the best environmental performance of reinforced concrete structures.
|
244 |
Optimal vehicle structural design for weight reduction using iterative finite element analysisTebby, Steven 01 June 2012 (has links)
The design and analysis of an automotive structure is an important stage of the vehicle design process. The structural characteristics have significant impact on the vehicle performance. During the design process it is necessary to have knowledge about the structural characteristics; however in the preliminary design stages detailed information about the structure is not available. During this period of the design process the structure is often simplified to a representative model that can be analyzed and used as the input for the detailed design process. A vehicle model is developed based on the space frame structures where the frame is the load carrying portion of the structure. Preliminary design analysis is conducted using a static load condition applied to the vehicle as pure bending and pure torsion. The deflections of the vehicle based on these loading conditions are determined using the finite element method which has been implemented in developed software. The structural response, measured as the bending and torsion stiffness, is used to evaluate the structural design. An optimization program is implemented to improve the structural design with the goal of reducing weight while increasing stiffness. Following optimization the model is completed by estimating suitable plate thicknesses using a method of substructure analysis. The output of this process will be an optimized structural model with low weight and high stiffness that is ready for detailed design. / UOIT
|
245 |
Ultimate Load Capacity Of Optimally Designed Cellular BeamsErdal, Ferhat 01 February 2011 (has links) (PDF)
Cellular beams became increasingly popular as an efficient structural form in
steel construction since their introduction. Their sophisticated design and
profiling process provides greater flexibility in beam proportioning for
strength, depth, size and location of circular holes. The purpose of
manufacturing these beams is to increase overall beam depth, the moment of
inertia and section modulus, which results in greater strength and rigidity.
Cellular beams are used as primary or secondary floor beams in order to
achieve long spans and service integration. They are also used as roof beams
beyond the range of portal-frame construction, and are the perfect solution for
curved roof applications, combining weight savings with a low-cost
manufacturing process.
The purpose of the current research is to study optimum design, ultimate load
capacity under applied load and finite element analysis of non-composite
cellular beams. The first part of the research program focuses on the optimum
design of steel cellular beams using one of the stochastic search methods called
&ldquo / harmony search algorithm&rdquo / . The minimum weight is taken as the design
objective while the design constraints are implemented from the Steel
Construction Institute. Design constraints include the displacement limitations,
overall beam flexural capacity, beam shear capacity, overall beam buckling
strength, web post flexure and buckling, vierendeel bending of upper and lower
tees and local buckling of compression flange. The design methods adopted in
this publication are consistent with BS5950. In the second part of the research,
which is the experimental work, twelve non-composite cellular beams are
tested to determine the ultimate load carrying capacities of these beams under
using a hydraulic plug to apply point load. The tested cellular beam specimens
have been designed by using harmony search algorithm. Finally, finite element
analysis program is used to perform elastic buckling analysis and predict
critical loads of all steel cellular beams. Finite element analysis results are then
compared with experimental test results for each tested cellular beam.
|
246 |
A Study On The Predictive Optimal Active Control Of Civil Engineering StructuresKeyhani, Ali 12 1900 (has links)
Uncertainty involved in the safe and comfort design of the structures is a major concern of civil engineers. Traditionally, the uncertainty has been overcome by utilizing various and relatively large safety factors for loads and structural properties. As a result in conventional design of for example tall buildings, the designed structural elements have unnecessary dimensions that sometimes are more than double of the ones needed to resist normal loads. On the other hand the requirements for strength and safety and comfort can be conflicting. Consequently, an alternative approach for design of the structures may be of great interest in design of safe and comfort structures that also offers economical advantages. Recently, there has been growing interest among the researchers in the concept of structural control as an alternative or complementary approach to the existing approaches of structural design. A few buildings have been designed and built based on this concept. The concept is to utilize a device for applying a force (known as control force) to encounter the effects of disturbing forces like earthquake force. However, the concept still has not found its rightful place among the practical engineers and more research is needed on the subject. One of the main problems in structural control is to find a proper algorithm for determining the optimum control force that should be applied to the structure.
The investigation reported in this thesis is concerned with the application of active control to civil engineering structures. From the literature on control theory. (Particularly literature on the control of civil engineering structures) problems faced in application of control theory were identified and classified into two categories: 1) problems common to control of all dynamical systems, and 2) problems which are specially important in control of civil engineering structures. It was concluded that while many control algorithms are suitable for control of dynamical systems, considering the special problems in controlling civil structures and considering the unique future of structural control, many otherwise useful control algorithms face practical problems in application to civil structures. Consequently a set of criteria were set for judging the suitability of the control algorithms for use in control of civil engineering structures. Various types of existing control algorithms were investigated and finally it was concluded that predictive optimal control algorithms possess good characteristics for purpose of control of civil engineering structures. Among predictive control algorithms, those that use ARMA stochastic models for predicting the ground acceleration are better fitted to the structural control environment because all the past measured excitation is used to estimate the trends of the excitation for making qualified guesses about its coming values. However, existing ARMA based predictive algorithms are devised specially for earthquake and require on-line measurement of the external disturbing load which is not possible for dynamic loads like wind or blast. So, the algorithms are not suitable for tall buildings that experience both earthquake and wind loads during their life. Consequently, it was decided to establish a new closed loop predictive optimal control based on ARMA models as the first phase of the study.
In this phase it was initially established that ARMA models are capable of predicting response of a linear SDOF system to the earthquake excitation a few steps ahead. The results of the predictions encouraged a search for finding a new closed loop optimal predictive control algorithm for linear SDOF structures based on prediction of the response by ARMA models. The second part of phase I, was devoted to developing and testing the proposed algorithm The new developed algorithm is different from other ARMA based optimal controls since it uses ARMA models for prediction of the structure response while existing algorithms predict the input excitation. Modeling the structure response as an AR or ARMA stochastic process is an effective mean for prediction of the structure response while avoiding measurement of the input excitation. ARMA models used in the algorithm enables it to avoid or reduce the time delay effect by predicting the structure response a few steps ahead. Being a closed loop control, the algorithm is suitable for all structural control conditions and can be used in a single control mechanism for vibration control of tall buildings against wind, earthquake or other random dynamic loads. Consequently the standby time is less than that for existing ARMA based algorithms devised only for earthquakes. This makes the control mechanism more reliable.
The proposed algorithm utilizes and combines two different mathematical models. First model is an ARMA model representing the environment and the structure as a single system subjected to the unknown random excitation and the second model is a linear SDOF system which represents the structure subjected to a known past history of the applied control force only. The principle of superposition is then used to combine the results of these two models to predict the total response of the structure as a function of the control force. By using the predicted responses, the minimization of the performance index with respect to the control force is carried out for finding the optimal control force.
As phase II, the proposed predictive control algorithm was extended to structures that are more complicated than linear SDOF structures. Initially, the algorithm was extended to linear MDOF structures. Although, the development of the algorithm for MDOF structures was relatively straightforward, during testing of the algorithm, it was found that prediction of the response by ARMA models can not be done as was done for SDOF case. In the SDOF case each of the two components of the state vector (i.e. displacement and velocity) was treated separately as an ARMA stochastic process. However, applying the same approach to each component of the state vector of a MDOF structure did not yield satisfactory results in prediction of the response. Considering the whole state vector as a multi-variable ARMA stochastic vector process yielded the desired results in predicting the response a few steps ahead. In the second part of this phase, the algorithm was extended to non-linear MDOF structures. Since the algorithm had been developed based on the principle of superposition, it was not possible to directly extend the algorithm to non-linear systems. Instead, some generalized response was defined. Then credibility of the ARMA models in predicting the generalized response was verified. Based on this credibility, the algorithm was extended for non-linear MDOF structures. Also in phase II, the stability of a controlled MDOF structure was proved. Both internal and external stability of the system were described and verified.
In phase III, some problems of special interest, i.e. soil-structure interaction and control time delay, were investigated and compensated for in the framework of the developed predictive optimal control. In first part of phase III soil-structure interaction was studied. The half-space solution of the SSI effect leads to a frequency dependent representation of the structure-footing system, which is not fit for control purpose. Consequently an equivalent frequency independent system was proposed and defined as a system whose frequency response is equal to the original structure -footing system in the mean squares sense. This equivalent frequency independent system then was used in the control algorithm. In the second part of this phase, an analytical approach was used to tackle the time delay phenomenon in the context of the predictive algorithm described in previous chapters. A generalized performance index was defined considering time delay. Minimization of the generalized performance index resulted into a modified version of the algorithm in which time delay is compensated explicitly. Unlike the time delay compensation technique used in the previous phases of this investigation, which restricts time delay to be an integer multiplier of the sampling period, the modified algorithm allows time delay to be any non-negative number. However, the two approaches produce the same results if time delay is an integer multiplier of the sampling period. For evaluating the proposed algorithm and comparing it with other algorithms, several numerical simulations were carried during the research by using MATLAB and its toolboxes. A few interesting results of these simulations are enumerated below:
ARM A models are able to predict the response of both linear and non-linear structures to
random inputs such as earthquakes.
The proposed predictive optimal control based on ARMA models has produced better
results in the context of reducing velocity, displacement, total energy and operational cost
compared to classic optimal control.
Proposed active control algorithm is very effective in increasing safety and comfort. Its
performance is not affected much by errors in the estimation of system parameters (e.g.
damping).
The effect of soil-structure interaction on the response to control force is considerable.
Ignoring SSI will cause a significant change in the magnitude of the frequency response
and a shift in the frequencies of the maximum response (resonant frequencies).
Compensating the time delay effect by the modified version of the proposed algorithm
will improve the performance of the control system in achieving the control goal and
reduction of the structural response.
|
247 |
Développement de bétons fibrés ultra performants pour la réalisation d'éléments de structure préfabriqués / Development of ultra high performance fibers reinforced concretes for the realization of structural precast elementsNguyen Phuong Amanjean, Elsa 01 December 2015 (has links)
Les Bétons Fibrés Ultra Performants (BFUP) sont les matériaux cimentaires aux performances les plus exceptionnelles. Ils se distinguent par des résistances caractéristiques à 28 jours en compression et en traction supérieures respectivement à 150 MPa et 6 MPa. Dans une politique globale de gestion économique et d'impact écologique de l'entreprise Lagarrigue, l'utilisation de BFUP en substitution des bétons de classe de résistance ordinaire en préfabrication parait pertinente. Cependant, les formulations actuelles onéreuses et peu écologiques limitent leur utilisation et leur essor. Cette étude a pour but de proposer des formulations de BFUP industrialisables caractérisées par un meilleur bilan économique et écologique, et conformes aux exigences de la prénorme matériaux BFUP (PR NF P18-470). Suite à une première étude de formulation et d'optimisation, quatre compositions de BFUP ont été mises au point sans traitement thermique, trois à base de métakaolin et une de référence plus classique avec fumée de silice. Leur caractérisation à l'état frais et à l'état durci a ensuite été réalisée afin de dresser leurs cartes d'identité et de les situer de manière réglementaire selon la prénorme (PR NF P18-470). Les bétons formulés sont autoplaçants et thixotropes. Le caractère thixotrope pouvant causer une discontinuité de l'interface entre deux couches de béton lors du coulage, des recommandations vis-à-vis du phasage de fabrication et de bétonnage ont été proposées. A l'état durci, un BFUP avec métakaolin et celui équivalent avec fumée de silice atteignent des résistances en compression supérieures à 150 MPa permettant de les classer en BFUP-S utilisables pour les structures alors que les deux autres formules à base de métakaolin dépassant les 130 MPa sont classés en BFUP-Z non structuraux (PR NF P18-470). En traction, trois BFUP sont de classe T2, leurs résistances élastiques et de post-fissuration sont respectivement comprises entre 6,0 et 8,0 MPa, et entre 4,6 et 7,0 MPa, une dernière composition étant à la limite de classification avec une résistance élastique et post-fissuration de 5,9 et 4,0 MPa respectivement. Les valeurs limites de retrait et du coefficient de fluage de la prénorme (PR NF P18-470) sont respectées. L'étude de la microstructure a permis de conforter certaines hypothèses émises lors de la caractérisation mécanique, notamment le retrait et le fluage. L'étude des propriétés de transfert montre une durabilité potentielle très élevée. La dernière phase constitue un aboutissement de ce projet avec la première application industrielle, basée sur le dimensionnement selon la future norme de calcul BFUP (PR-NF P18-710), qui concerne la réalisation d'éléments préfabriqués d'un ouvrage. / Ultra-High Performance Fiber-Reinforced Concretes are cementitious materials of exceptional performances. They are characterized by a compressive and tensile strength over respectively 150 MPa and 6 MPa at 28 days. Within a global management of economic and the environmental impact of Lagarrigue company, the use of UHPFRC in substitution of ordinary concrete in precast elements seems relevant. However, expensive materials and environmental cost of current mix design restrict their use and development. This study aims at proposing UHPFRC mix designs which are characterized by better economic and environmental cost and respect criteria of the pre-standard UHPFRC materials (PR NF P18-470). Firstly, an optimization study of UHPFRC mix design has been established, four mixtures have been developed without heat treatment application, three of them based on metakaolin and one with silica fume as a reference mixture. Secondly, the characterization of fresh and hardened state was conducted in order to establish their identity cards and confront them to the criteria of (PR NF P18-470. In the fresh state, all concretes studied are self-compacting concretes and present thixotropic character. The thixotropic character may cause a discontinuity of the interface between two layers of concrete during casting, recommendations of manufacturing and casting process have been proposed. In the hardened state, one UHPFRC with metakaolin and another one with silica fume reached compressive strengths over 150 MPa, they could be classified as UHPFRC-S and could be used for structures designs while the two other mixtures based on metakaolin exceeded 130 MPa were classified as non-structural UHPFRC-Z (PR NF P18-470). For tensile behavior, three UHPFRC are classed T2, their elastic and post-cracking strengths are between 6.0 and 8.0 MPa, and between 4.6 and 7.0 MPa respectively, while the last mixture is in the classification limit with elastic and post-cracking strengths of 5.9 and 4.0 MPa respectively. The limit values of shrinkage and creep coefficient recommended (PR NF P18-470) were satisfying. The microstructure evaluation allowed strengthening certain assumptions made in the mechanical characterization, including shrinkage and creep. The durability characterization showed very high potential sustainability materials. The last part is an outcome of this research project with the first industrial application, based on the structural design of the UHPFRC future standard (PR NF-P18-710) which concerns the realization of precast elements of a structure.
|
248 |
Design Optimization and Analysis of Long-Range Hydrogen-Fuelled Hypersonic Cruise VehiclesSharifzadeh, Shayan 25 August 2017 (has links)
Aviation industry is continuously growing especially for very long distance flights due to the globalisation of local economies around the world and the explosive economic growth in Asia. Reducing the time of intercontinental flights from 16-20 hours to 4 hours or less would therefore make the, already booming, ultra-long distance aviation sector even more attractive. To accomplish this drastic travel time reduction for civil transport, hypersonic cruise aircraft are considered as a potential cost-effective solution. Such vehicles should also be fuelled by liquid hydrogen, which is identified as the only viable propellant to achieve antipodal hypersonic flight with low environmental impact. Despite considerable research on hypersonic aircraft and hydrogen fuel, several major challenges should still be addressed before such airliner becomes reality. The current thesis is therefore motivated by the potential benefit of hydrogen-fuelled hypersonic cruise vehicles associated with their limited state-of-the-art.Hypersonic cruise aircraft require innovative structural configurations and thermal management solutions due to the extremely harsh flight environment, while the uncommon physical properties of liquid hydrogen, combined with high and long-term heat fluxes, introduce complex design and technological storage issues. Achieving hypersonic cruise vehicles is also complicated by the multidisciplinary nature of their design. In the scope of the present research, appropriate methodologies are developed to assess, design and optimize the thermo-structural model and the cryogenic fuel tanks of long-range hydrogen-fuelled hypersonic civil aircraft. Two notional vehicles, cruising at Mach 5 and Mach 8, are then investigated with the implemented methodologies. The design analysis of light yet highly insulated liquid hydrogen tanks for hypersonic cruise vehicles indicates an optimal gravimetric efficiency of 70-75% depending on insulation system, tank wall material, tank diameter, and flight profile. A combination of foam and load-bearing aerogel blanket leads to the lightest cryogenic tank for both the Mach 5 and the Mach 8 aircraft. If the aerogel blanket cannot be strengthened sufficiently so that it can bear the full load, then a combination of foam and fibrous insulation materials gives the best solution for both vehicles. The aero-thermal and structural design analysis of the Mach 5 cruiser shows that the lightest hot-structure is a titanium alloy construction made of honeycomb sandwich panels. This concept leads to a wing-body weight of 143.9 t, of which 36% accounts for the wing, 32% for the fuselage, and 32% for the cryogenic tanks. As expected, hypersonic thermal loads lead to important weight penalties (of more than 35%). The design of the insulated cold structure, however, demonstrates that the long-term high-speed flight of the airliner requires a substantial thermal protection system, such that the best configuration (obtained by load-bearing aerogel blanket) leads to a titanium cold design of only 4% lighter than the hot structure. Using aluminium 7075 rather than titanium offers a further weight saving of about 2%, resulting in a 135.4 t wing-body weight (with a contribution of 23%, 25%, 18% and 34% from the TPS, the wing, the fuselage, and the cryogenic tanks respectively). Given the design hypotheses, the difference in weight is not significant enough to make a decisive choice between hot and cold concepts. This requires the current methodologies to be further elaborated by relaxing the simplifications. Investigation of the thermal protection must be extended from one single point to different regions of the vehicle, and the TPS thickness and weight should be considered in the structural sizing of the cold design. More generally, the design process should be matured by including additional (static, dynamic and transient) loads, special structural concepts, multi-material configurations and other parameters such as cost and safety aspects. / Doctorat en Sciences de l'ingénieur et technologie / This thesis was conducted in co-tutelle between University of Sydney and Université Libre de Bruxelles.Professor Dries Verstraete was my supervisor at the University of Sydney (so as a member of SydneyUni), but is automatically registered here as a member of ULB because he worked at ULB almost ten years ago.Ben Thornber is also a member of the University of Sydney but the application does not save it for an unknown reason. / info:eu-repo/semantics/nonPublished
|
249 |
Metodologias para o dimensionamento de placas de \"granitos\" em sistemas não-aderentes de fixação / Design methodology for non adherent covering systems with \"granite\" slabsSérgio Trajano Franco Moreiras 14 March 2014 (has links)
Os sistemas não aderentes de fixação com placas de \"granito\", em comparação com os métodos que empregam argamassas, exigem maior acuidade no projeto e uma avaliação estrutural criteriosa. As metodologias empregadas no país consideram apenas o parâmetro de resistência à tração na flexão na ruptura, não levando em conta outros parâmetros estruturais importantes. Para preencher esta lacuna, o presente trabalho propõe uma metodologia para dimensionamento de três sistemas não aderentes de fixação: fachadas ventiladas, pisos elevados e lajes estruturais. Três \"granitos\" brasileiros de alto valor comercial - Vermelho Capão Bonito (VCB), Preto São Gabriel (PSG) e Branco Desireé (BD) - foram submetidos a ensaios laboratoriais para a determinação do comportamento tensão versus deformação, da tensão de ruptura, dos deslocamentos verticais, do módulo de Young e do coeficiente de Poisson. Estes parâmetros foram empregados para o dimensionamento de fachadas ventiladas e de pisos elevados. Os modelos computacionais do programa STRAP foram calibrados com dados obtidos do monitoramento de protótipos de fachadas e de pisos elevados. Para fachadas ventiladas (placas de 60 x 100 cm) as espessuras calculadas foram de 30 mm para o VCB, de 25 mm para o PSG e de 55 mm para o BD. Para pisos elevados (placas de 60 x 60 cm) as espessuras foram de 35 mm para o VCB, de 30 mm para o PSG e de 35 mm para o BD. Os resultados sugerem que a especificação da espessura mínima de 20 mm, comumente usada em diversos projetos nacionais, não considera aspectos estruturais importantes. / Design on \"granite\" plates for non adherent covering systems, in comparison with mortar methods, needs a structural evaluation. The Brazilian design methodology considers only the breaking load bending tensile strength and do not consider another important structural characteristics. To fill this gap, this thesis presents a methodology for design on three \"granite\" plates for non adherent covering systems: ventilated façades, pedestal paving system and structural slab. Three Brazilian \"granites\" with great commercial acceptance - Capão Bonito Red (CBR), São Gabriel Black (SGB) and Desireé White (DW) were tested to obtain the strength versus strain behavior, the breaking load strength, the modulus of Young and the Poisson coefficient. To structural design this characteristics were applied in computational models, that were calibrated with tests data. The thickness calculated for ventilated façades (slab of 60 x 100 cm) is 30 mm for CBR, 25 mm for SGB and 55 mm for DW. The thickness calculated for pedestal paving system (slab of 60 x 60 cm) is 35 mm for CBR, 30 mm for SGB and 35 mm for DW. This results show that the thickness of 20mm applied for Brazilian practice design criteria do not consider important structural issues.
|
250 |
Análise de novo procedimento para o projeto estrutural de tubos de concreto enterrados / Analysis of new procedure for the structural design of buried concrete pipeAnselmo Fioranelli Junior 04 July 2005 (has links)
O procedimento usual no Brasil para o projeto de tubos de concreto enterrados é o procedimento de Marston-Spangler. Este trabalho avalia o comportamento deste procedimento com o procedimento padrão recomendado pela ASCE (American Society of Civil Engineer), denominado de SIDD (Standard Practice for Direct Design of Buried Precast Concrete Pipe Using Standard Installations). A ferramenta de análise dos dois procedimentos é o método dos elementos finitos, o programa SSCOMPPC. São feitas várias simulações numéricas das instalações submetidas às mesmas situações para que assim se possa avaliar o comportamento de cada umas delas. O trabalho conclui que a falta de parâmetros para a execução do procedimento da Marston-Spangler pode comprometer o comportamento desta. Quando comparado as classes de instalação de A a D de Marston-Spangler com as instalações padronizadas SIDD tipo 1 a 4, respectivamente, as instalações SIDD tipo 3 e 4 possuem uma melhor distribuição de esforços do que as instalações classe C e D. Quando comparado a forma de projeto habitual no Brasil, o método indireto do procedimento de Marston-Spangler, com o método direto, tem-se que o método direto acarreta numa grande economia de armadura. Esta economia para o procedimento padronizado SIDD vai de 81,1% a 97,1% de armadura, e em relação com o método direto para o procedimento SIDD a economia vai de 54,4% a 93,1%, para o caso de aterro de 3 m de altura e tubo de 1200 mm de diâmetro interno. Com esta economia e com os recursos computacionais disponíveis hoje, o cálculo pelo método direto é vantajoso. Na comparação dos procedimentos de Marston-Spangler com o procedimento padronizado SIDD, pelo método direto, o procedimento de Marston-Spangler leva vantagem na classe B, sendo que a instalação tipo 2 do SIDD acarreta num consumo em média de 72,5% a mais de armadura. Porém quando a classe C e classe D, que são as mais executadas, são comparadas com as instalações tipo 3 e tipo 4, as instalações tipo 3 e tipo 4 consomem menos armadura, em média consomem 43,8% e 55,6% menos armadura do que as instalações classe C e classe D, respectivamente. / The most popular procedure in Brazil for the buried concrete pipe design is the Marston-Spangler\'s procedure. This work compares the performance of the Marston-Spangler\'s procedure and SIDD (Standard Practice for Direct Design of Buried Precast Concrete Pipe Using Standard Installations), recommended by ASCE (American Society of Civil Engineer). This work uses the finite element method, using the software SSCOMPPC, to analyse the two procedures. It is made many diferent simulations using the finite element method to analyse the behaviour of each procedure. The work concludes that Marston-Spangler\'s procedure needs more paramether to define each class of instalation. When compared the classes A to D of the Marston-Spangler\'s procedure with the type 1 to type 4 of the SIDD procedure, the work concludes the type 3 and 4 have a bether performance compared to the classes C and D. When compared the most popular procedure in Brazil, the Marston-Spangler\'s procedure using the indirect method, with the direct method, the direct method has a better performance. The economy of reinforcemet goes from 81,6% to 97,1% using the SIDD procedure and goes from 54,4% to 93,1%, using the Marston-Spangler\'s procedure (direct design). With the computational resources avaliable today, the direct design is a great advantage. Comparing the procedures of Marston-Spangler and SIDD, using the direct method in both procedures, the class B of Marston-Spangler\'s procedure has a better performance compared to the type 2 of SIDD procedure. The economy of reinforcement for this case is 27,5%. But the type 3 and 4 have a better performance compared to the class C and D. On type 3 and 4 installations, the economy of reinforcement is 43,8% and 55,6% compared to classes C and D, respectively.
|
Page generated in 0.0749 seconds