• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 137
  • 80
  • 14
  • 9
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 284
  • 284
  • 77
  • 67
  • 58
  • 58
  • 52
  • 43
  • 40
  • 38
  • 36
  • 34
  • 31
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Structural Optimization of Product Families : With Application to Vehicle Body Structures

Andersson, Maria, Kristofferson, Hanna January 2006 (has links)
<p>Some products share one or two modules and while developing these products, structural optimization with stiffness as the objective function can be a useful tool. There might be no or very little CAD-data available in the pre-development phase and it is not certain that existing designs can be, or is desirable to use as a reference. The main objective of this thesis is to establish an accurate and fast-to-use methodology which can be utilized while developing new cars.</p><p>In this thesis, the Volvo products S40, V50 and C70 serve as a basis for this case study. All the models are beam structures and the masses of components are added as point and line masses. Several optimization analyses are performed on one or three products exposed to seven load cases. Additional analyses with shell elements, more simplified models and changed load case balance achieved by normalization of the different load case compliances are also studied to investigate how these factors influence the results.</p><p>Analyses show that front crash to a great extent dominates the results while normalization increases the influence of the remaining load cases. Since front crash is dominating and the front area is shared in all products, the performance is remarkably similar when three products are optimized compared to separate analyses of one product. Analysis of models without added point or line masses gives a result which greatly differs from previous results and therefore shows that added masses are required. The methodology is applicable to develop products and detect new load paths through the car.</p>
112

Design and Testing of Flexible Aircraft Structures

Carlsson, Martin January 2004 (has links)
Methods for structural design, control, and testing offlexible aircraft structures are considered. Focus is onnonconventional aircraft con- figurations and control concepts.The interaction between analysis and testing is a central topicand all studies include validation testing and comparisonbetween computational and experimental results. The first part of the thesis is concerned with the designand testing of an aeroelastic wind-tunnel model representing aBlended Wing Body (BWB) aircraft. The investigations show thata somewhat simplified wind-tunnel model design concept isuseful and efficient for the type of investigations considered.Also, the studies indicate that well established numericaltools are capable of predicting the aeroelastic behavior of theBWB aircraft with reasonable accuracy. Accurate prediction ofthe control surface aerodynamics is however found to bedifficult. A new aerodynamic boundary element method for aeroelastictimedomain simulations and its experimental validation arepresented. The properties of the method are compared totraditional methods as well as to experimental results. Thestudy indicates that the method is capable of efficient andaccurate aeroelastic simulations. Next, a method for tailoring a structure with respect to itsaeroelastic behavior is presented. The method is based onnumerical optimization techniques and developed for efficientdesign of aeroelastic wind-tunnel models with prescribed staticand dynamic aeroelastic properties. Experimental validationshows that the design method is useful in practice and that itprovides a more efficient handling of the dynamic aeroelasticproperties compared to previous methods. Finally, the use of multiple control surfaces andaeroelastic effects for efficient roll maneuvering isconsidered. The idea is to design a controller that takesadvantage of the elasticity of the structure for performancebenefits. By use of optimization methods in combination with afairly simple control system, good maneuvering performance isobtained with minimal control effort. Validation testing usinga flexible wind-tunnel model and a real-time control systemshows that the control strategy is successful in practice.Keywords: aeroelasticity, active aeroelastic structures,aeroelastic tailoring, control, structural optimization,wind-tunnel testing. / QC 20120320
113

A Practical Optimum Design Of Steel Structures With Scatter Search Method And Sap2000

Korkut, Ahmet Esat 01 February 2013 (has links) (PDF)
In the literature, a large number of metaheuristic search techniques have been proposed up to present time and some of those have been used in structural optimization. Scatter search is one of those techniques which has proved to be effective when solving combinatorial and nonlinear optimization problems such as scheduling, routing, financial product design and other problem areas. Scatter search is an evolutionary method that uses strategies based on a composite decision rules and search diversification and intensification for generating new trial points. Broodly speaking, this thesis is concerned with the use and application of scatter search technique in structural optimization. A newly developed optimization algorithm called modified scatter search is modified which is computerized in a software called SOP2012. The software SOP2012 is integrated with well-known structural analysis software SAP2000 using application programming interface for size optimum design of steel structures. Numerical studies are carried out using a test suite consisting of five real size design examples taken from the literature. In these examples, various steel truss and frame structures are designed for minimum weight according to design limitations imposed by AISC-ASD (Allowable Stress Design Code of American Institute of Steel Construction). The results reveal that the modified scatter search technique is very effective optimization technique for truss structures, yet its performance can be assessed ordinary for frame structures.
114

Industrial Silo Optimization

Gopinath, Varun January 2011 (has links)
This thesis aims to build a working design-analyze-optimize methodology for Alstom Power Sweden AB at Växjö, Sweden. In order to be profitable in today’s competitive industrial product market, it is necessary to engineer optimized products fast. This involves CAD design and FEA analysis to work within an optimization routine in a seamless fashion which will result in a more profitable product. This approach can be understood as a model-based design, where the 3D CAD data is central to the product life cycle. The present approach provides many benefits to a company because of the use of a central database ensure access to the latest release of the 3D model. This allows for a streamlined design to fabrication life cycle with inputs from all departments of a product based company. Alstom is looking into automating some of their design process so as to achieve efficiency within their design department. This report is the result of a study where an industrial silo is taken as an example. A design loop involving CAD design and FE analysis is built to work with an optimization routine to minimize the mass and also ensure structural stiffness and stability. Most engineers work with a lot of constraints with regard to material stock size and other design codes (e.g. Euro Codes). In this report an efficient way to design an industrial product in a 3D CAD (CATIA) program so as to stay within these constrains and still obtain credible computation results within an optimization loop will be discussed.
115

Structural Optimization of Product Families : With Application to Vehicle Body Structures

Andersson, Maria, Kristofferson, Hanna January 2006 (has links)
Some products share one or two modules and while developing these products, structural optimization with stiffness as the objective function can be a useful tool. There might be no or very little CAD-data available in the pre-development phase and it is not certain that existing designs can be, or is desirable to use as a reference. The main objective of this thesis is to establish an accurate and fast-to-use methodology which can be utilized while developing new cars. In this thesis, the Volvo products S40, V50 and C70 serve as a basis for this case study. All the models are beam structures and the masses of components are added as point and line masses. Several optimization analyses are performed on one or three products exposed to seven load cases. Additional analyses with shell elements, more simplified models and changed load case balance achieved by normalization of the different load case compliances are also studied to investigate how these factors influence the results. Analyses show that front crash to a great extent dominates the results while normalization increases the influence of the remaining load cases. Since front crash is dominating and the front area is shared in all products, the performance is remarkably similar when three products are optimized compared to separate analyses of one product. Analysis of models without added point or line masses gives a result which greatly differs from previous results and therefore shows that added masses are required. The methodology is applicable to develop products and detect new load paths through the car.
116

Extension-Twist Coupling Optimization in Composite Rotor Blades

Ozbay, Serkan 15 December 2005 (has links)
For optimal rotor performance in a tiltrotor aircraft the difference in the inflow and the rotor speeds between the hover and cruise flight modes suggests different blade twist and chord distributions. The blade twist rates in current tiltrotor applications are defined based upon a compromise between the figure of merit in hover and propeller efficiency in airplane mode. However, when each operation mode is considered separately the optimum blade distributions are found to be considerably different. Passive blade twist control, which uses the inherent variation in centrifugal forces on a rotor blade to achieve optimum blade twist distributions in each flight mode through the use of extension-twist coupled composite rotor blades, has been considered for performance improvement of tiltrotor aircraft over the last two decades. The challenge for this concept is to achieve the desired twisting deformations in the rotor blade without altering the aeroelastic characteristics of the vehicle. A concept referred to as the sliding mass concept is proposed in this work in order to increase the twist change with rotor speed for a closed-cell composite rotor blade cross-section to practical levels for performance improvement in a tiltrotor aircraft. The concept is based on load path changes for the centrifugal forces by utilizing non-structural masses readily available on a conventional blade, such as the leading edge balancing mass. A multilevel optimization technique based on the simulated annealing method is applied to improve the performance of the XV15 tiltrotor aircraft. A cross-sectional analysis tool, VABS together with a multibody dynamics code, DYMORE are integrated into the optimization process. The optimization results revealed significant improvements in the power requirement in hover while preserving cruise efficiency. It is also shown that about 21% of the improvement is provided through the sliding mass concept pointing to the additional flexibility the concept provides for tailoring of the structure without any additional weight penalty on the system.
117

Structural Optimization Of A Triner Aircraft Wing By Using Genetic Algorithm

Cakir, Mustafa Kagan 01 September 2008 (has links) (PDF)
In this study, a design procedure incorporating a genetic algorithm (GA) is developed for optimization of the wing structure of a two seated trainer aircraft with single turboprop engine. The objective function considered is the total weight of the structure. The objective function is minimized subjected to certain strength requirements. In order to evaluate the design constraints and model the wing structure, finite element analysis is performed by using a conventional finite element solver (i.e. MSC/NASTRAN&reg / ). In addition, MSC/PATRAN&reg / commercial package program is used as preprocessor and postprocessor tool. VISUAL FORTRAN programming language is also utilized as the genetic algorithm implementation tool. Several conclusions drawn from the optimization results are presented.
118

Optimum Design Of Double-layer Grid Systems: Comparison With Current Design Practice Using Real-life Industrial Applications

Aydincilar, Yilmaz 01 August 2010 (has links) (PDF)
Double-layer grid systems are three-dimensional pin-jointed structures, which are generally used for covering roofs having large spans. In this study, evolution strategies method is used to optimize space trusses. Evolution strategies method is a type of evolutionary algorithms, which simulate biological evolution and natural selection phenomenon to find the best solution for an optimization problem. In this method, an initial population is formed by various solutions of design problem. Then this initial population starts to evolve by using recombination, mutation, and selection operators, which are adopted for optimization of space trusses by modifying some parameters. Optimization routine continues for a certain number of generations, and best design obtained in this process is accepted as optimum solution. OFES, a design and optimization software developed for optimum design of steel frames, is modified in this study to handle space truss systems. By using this v software, six design examples taken from real-life industrial applications with element numbers changing between 792 and 4412 are studied. The structural systems defined in examples are optimized for minimum weight in accordance with design provisions imposed by Turkish Specification, TS648. The optimization is performed based on selecting member sizes and/or determining the elevation of the structure and/or setting the support conditions of the system. The results obtained are compared with those of FrameCAD, a software which is predominantly used for design of such systems in national current design practice.
119

Design and Testing of Flexible Aircraft Structures

Carlsson, Martin January 2004 (has links)
<p>Methods for structural design, control, and testing offlexible aircraft structures are considered. Focus is onnonconventional aircraft con- figurations and control concepts.The interaction between analysis and testing is a central topicand all studies include validation testing and comparisonbetween computational and experimental results.</p><p>The first part of the thesis is concerned with the designand testing of an aeroelastic wind-tunnel model representing aBlended Wing Body (BWB) aircraft. The investigations show thata somewhat simplified wind-tunnel model design concept isuseful and efficient for the type of investigations considered.Also, the studies indicate that well established numericaltools are capable of predicting the aeroelastic behavior of theBWB aircraft with reasonable accuracy. Accurate prediction ofthe control surface aerodynamics is however found to bedifficult.</p><p>A new aerodynamic boundary element method for aeroelastictimedomain simulations and its experimental validation arepresented. The properties of the method are compared totraditional methods as well as to experimental results. Thestudy indicates that the method is capable of efficient andaccurate aeroelastic simulations.</p><p>Next, a method for tailoring a structure with respect to itsaeroelastic behavior is presented. The method is based onnumerical optimization techniques and developed for efficientdesign of aeroelastic wind-tunnel models with prescribed staticand dynamic aeroelastic properties. Experimental validationshows that the design method is useful in practice and that itprovides a more efficient handling of the dynamic aeroelasticproperties compared to previous methods.</p><p>Finally, the use of multiple control surfaces andaeroelastic effects for efficient roll maneuvering isconsidered. The idea is to design a controller that takesadvantage of the elasticity of the structure for performancebenefits. By use of optimization methods in combination with afairly simple control system, good maneuvering performance isobtained with minimal control effort. Validation testing usinga flexible wind-tunnel model and a real-time control systemshows that the control strategy is successful in practice.Keywords: aeroelasticity, active aeroelastic structures,aeroelastic tailoring, control, structural optimization,wind-tunnel testing.</p>
120

Efficient reliability estimation approach for analysis and optimization of composite structures

Singh, Mukti Nath. January 2002 (has links)
Thesis (M.S.)--Mississippi State University. Department of Aerospace Engineering. / Title from title screen. Includes bibliographical references.

Page generated in 0.1248 seconds