• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 16
  • 9
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 137
  • 137
  • 132
  • 39
  • 38
  • 32
  • 32
  • 28
  • 25
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Reconstruction spatio-temporelle de la ville de Reims à partir de documents anciens / Spatio-temporal reconstruction of the city of Reims relying on old documents

Younes, Lara 04 December 2014 (has links)
Ces travaux de thèse constituent la première étape d'une réflexion sur la conception d'un système participatif visant la reconstruction et la visualisation de l'espace urbain de la ville de Reims au cours du temps. Dans ces travaux, nous abordons les problèmes de reconnaissance, de reconstruction et géoréférencement spatio-temporel. Ce projet s'appuie sur l'exploitation des sources historiques iconographiques et contextuelles hétérogènes et éparses, dont une collection de cartes postales anciennes et le cadastre actuel géoréférencé.Dans l'objectif d'un travail participatif, il s'avère nécessaire de procurer une aide efficace à l'utilisateur lorsqu'il apporte de nouvelles connaissances dans le système. Une solution robuste doit être apportée en raison de multiples évolutions ou déformations du modèle urbain à travers le temps. Nous avons développé une solution répondant à ce besoin. Elle s'appuie sur des briques de traitement complémentaires, en interaction avec l'utilisateur et s'insère naturellement dans une approche incrémentale de reconstruction. Nous proposons une solution permettant d'extraire, de reconstruire en 3D et de visualiser des bâtiments multi-façades présents dans les cartes postales sans disposer des dimensions réelles des bâtiments. La construction du modèle repose sur l'identification de façades 2D. Elle est obtenue au travers de l'analyse du contenu de l'image. Cette phase d'identification permet de procéder à la reconstruction de modèles 3D, d'extraire des textures 2D associées à ces modèles ainsi que d'enrichir dynamiquement notre système. Les caractéristiques retrouvées dans les images infèrent une estimation sur leur datation, et l'alignement des modèles reconstruits avec le cadastre sur le géoréférencement des bâtiments. Le système ainsi construit constitue une amorce pour la conception d'un système d'information géographique participatif 3D+T permettant aux citoyens de Reims de s'approprier l'histoire de leur ville. / This thesis is the first step toward the design of a Volunteered system for the reconstruction and visualization of urban space in the city of Reims through time. In this work, we address the problems of spatio-temporal recognition, reconstruction and georeferencing. This project relies on the use of heterogeneous and sparse iconographic and contextual historical data, particularly a collection of old postcards and the current cadastral map.With the aim of a Volunteered work, it is necessary to provide useful help to the user when bringing new knowledge into the system. A robust solution is required due to multiple changes of the urban model through time. We have developed a solution to meet those needs. This process fits in an incremental approach of reconstruction and will be completed by a user. We propose to extract, reconstruct and visualize 3D multi-façade buildings from old postcards with no knowledge on their real dimensions. The construction of the models is based on 2D façades identification. It can be obtained through image analysis. This identification allows the reconstruction of 3D models, the extraction of their associated 2D façades textures and the enhancement of the system. The features found in the images infer an estimate of their dating, and the alignment of the models with the cadastral map allows there georeferencing. The system thus constructed is a primer for the design of a Volunteered 3D+T GIS for Reims citizens to capture the history of their city.
82

Calibration par programmation linéaire et reconstruction spatio-temporelle à partir de réseaux d’images / Calibration with linear programming and spatio-temporal reconstruction from a network of cameras

Courchay, Jérôme 05 January 2011 (has links)
Le problème de la stéréovision à partir de caméras multiples calibrées capturant une scène fixe est étudié depuis plusieurs décennies. Les résultats présentés dans le benchmark de stéréovision proposé par Strecha et al., attestent de la qualité des reconstructions obtenues. En particulier, les travaux du laboratoire IMAGINE, mènent à des résultats visuellement impressionnant. Aussi, il devient intéressant de calibrer des scènes de plus en plus vastes, afin d'appliquer ces algorithmes de stéréovision de façon optimale. Trois objectifs essentiels apparaissent : – La précision de la calibration doit être améliorée. En effet comme pointé par Yasutaka Furukawa, même les benchmarks de stéréovision fournissent parfois des caméras bruitées à la précision imparfaite. Un des moyen d'améliorer les résultats de stéréovision est d'augmenter la précision de la calibration. – Il est important de pouvoir prendre en compte les cycles dans le graphe des caméras de façon globale. En effet la plupart des méthodes actuelles sont séquentielles, et dérivent. Ainsi ces méthodes ne garantissent pas, pour une très grande boucle, de retrouver cette configuration cyclique, mais peuvent plutôt retrouver une configuration des caméras en spirale. Comme on calibre des réseaux d'images, de plus en plus grand, ce point est donc crucial. – Pour calibrer des réseaux d'images très grands, il convient d'avoir des algorithmes rapides. Les méthodes de calibration que nous proposons dans la première partie, permettent de calibrer des réseaux avec une précision très proche de l'état de l'art. D'autre part elle permettent de gérer les contraintes de cyclicité par le biais d'optimisations linéaires sous contraintes linéaires. Ainsi ces méthodes permettent de prendre en compte les cycles et bénéficient de la rapidité de la programmation linéaire. Enfin, la recherche en stéréovision étant arrivée à maturité, il convient de s'intéresser à l'étape suivante, à savoir la reconstruction spatio-temporelle. La méthode du laboratoire IMAGINE représentant l'état de l'art en stéréovision, il est intéressant de développer cette méthode et de l'étendre à la reconstruction spatio-temporelle, c'est-à-dire la reconstruction d'une scène dynamique capturée par un dôme de caméras. Nous verrons cette méthode dans la seconde partie de ce manuscrit / The issue of retrieving a 3D shape from a static scene captured with multiple view point calibrated cameras has been deeply studied these last decades. Results presented in the stereovision benchmark made by Strecha et al., show the high quality of state of the art methods. Particularly, works from IMAGINE laboratory lead to impressive results. So, it becomes convenient to calibrate wider and wider scenes, in order to apply these stereovision algorithms to large scale scenes. Three main objectives appear : – The calibration accuracy should be improved. As stated by Yasutaka Furukawa, even stereovision benchmarks use noisy cameras. So one obvious way to improve stereovision, is to improve camera calibration. – It is crucial to take cycles into account in cameras graph in a global way. Most of nowadays methods are sequential and so present a drift. So these methods do not offer the guarantee to retrieve the loopy configuration for a loop made of a high number of images, but retrieve a spiral configuration. As we aim to calibrate wider and wider cameras networks, this point becomes quite crucial. – To calibrate wide cameras networks, having quick and linear algorithms can be necessary. Calibration methods we propose in the first part, allow to calibrate with an accuracy close to state of the art. Moreover, we take cyclicity constraints into account in a global way, with linear optimisations under linear constraints. So these methods allow to take cycle into account and benefit from quickness of linear programming. Finally, sterovision being a well studied topic, it is convenient to concentrate on the next step, that is, spatio-temporal reconstruction. The IMAGINE' stereovision method being the state of the art, it is interesting to extend this method to spatio-temporal reconstruction, that is, dynamique scene reconstruction captured from a dome of cameras
83

Rekonstrukce 3D informací o automobilech z průjezdů před dohledovou kamerou / Reconstruction of 3D Information about Vehicles Passing in front of a Surveillance Camera

Dobeš, Petr January 2017 (has links)
This master's thesis focuses on 3D reconstruction of vehicles passing in front of a traffic surveillance camera. Calibration process of surveillance camera is first introduced and the relation of automatic calibration with 3D information about observed traffic is described. Furthermore, Structure from Motion, SLAM, and optical flow algorithms are presented. A set of experiments with feature matching and the Structure from Motion algorithm is carried out to examine results on images of passing vehicles. Afterwards, the Structure from Motion pipeline is modified. Instead of using SIFT features, DeepMatching algorithm is utilized to obtain quasi-dense point correspondences for the subsequent reconstruction phase. Afterwards, reconstructed models are refined by applying additional constraints specific to the vehicle reconstruction task. The resultant models are then evaluated. Lastly, observations and acquired information about the process of vehicle reconstruction are utilized to form proposals for prospective design of an entirely custom pipeline that would be specialized for 3D reconstruction of passing vehicles.
84

The Integration of Iterative Convergent Photogrammetric Models and UAV View and Path Planning Algorithms into the Aerial Inspection Practices in Areas with Aerial Hazards

Freeman, Michael James 01 December 2020 (has links)
Small unmanned aerial vehicles (sUAV) can produce valuable data for inspections, topography, mapping, and 3D modeling of structures. Used by multiple industries, sUAV can help inspect and study geographic and structural sites. Typically, the sUAV and camera specifications require optimal conditions with known geography and fly pre-determined flight paths. However, if the environment changes, new undetectable aerial hazards may intersect new flight paths. This makes it difficult to construct autonomous flight path missions that are safe in post-hazard areas where the flight paths are based on previously built models or previously known terrain details. The goal of this research is to make it possible for an unskilled pilot to obtain high quality images at key angles which will facilitate the inspections of dangerous environments affected by natural disasters through the construction of accurate 3D models. An iterative process with converging variables can circumvent the current deficit in flying UAVs autonomously and make it possible for an unskilled pilot to gather high quality data for the construction of photogrammetric models. This can be achieved by gaining preliminary photogrammetric data, then creating new flight paths which consider new developments contained in the generated dense clouds. Initial flight paths are used to develop a coarse representation of the target area by aligning key tie points of the initial set of images. With each iteration, a 3D mesh is used to compute a new optimized view and flight path used for the data collection of a better-known location. These data are collected, the model updated, and a new flight path is computed until the model resolution meets the required heights or ground sample distances (GSD). This research uses basic UAVs and camera sensors to lower costs and reduce the need for specialized sensors or data analysis. The four basic stages followed in the study include: determination of required height reductions for comparison and convergent limitation, construction of real-time reconnaissance models, optimized view and flight paths with vertical and horizontal buffers constructed from previous models, and develop an autonomous process that combines the previous stages iteratively. This study advances the use of autonomous sUAV inspections by developing an iterative process of flying a sUAV to potentially detect and avoid buildings, trees, wires, and other hazards in an iterative manner with minimal pilot experience or human intervention; while optimally collecting the required images to generate geometric models of predetermined quality.
85

Evaluating the performance of multi-rotor UAV-Sfm imagery in assessing simple and complex forest structures: comparison to advanced remote sensing sensors

Onwudinjo, Kenechukwu Chukwudubem 08 March 2022 (has links)
The implementation of Unmanned Aerial Vehicles (UAVs) and Structure‐from‐Motion (SfM) photogrammetry in assessing forest structures for forest inventory and biomass estimations has shown great promise in reducing costs and labour intensity while providing relative accuracy. Tree Height (TH) and Diameter at Breast Height (DBH) are two major variables in biomass assessment. UAV-based TH estimations depend on reliable Digital Terrain Models (DTMs), while UAV-based DBH estimations depend on reliable dense photogrammetric point cloud. The main aim of this study was to evaluate the performance of multirotor UAV photogrammetric point cloud in estimating homogeneous and heterogeneous forest structures, and their comparison to more accurate LiDAR data obtained from Aerial Laser Scanners (ALS), Terrestrial Laser Scanners (TLS), and more conventional means like manual field measurements. TH was assessed using UAVSfM and LiDAR point cloud derived DTMs, while DBH was assessed by comparing UAVSfM photogrammetric point cloud to LiDAR point cloud, as well as to manual measurements. The results obtained in the study indicated that there was a high correlation between UAVSfM TH and ALSLiDAR TH (R2 = 0.9258) for homogeneous forest structures, while a lower correlation between UAVSfM TH and TLSLiDAR TH (R2 = 0.8614) and UAVSfM TH and ALSLiDAR TH (R2 = 0.8850) was achieved for heterogeneous forest structures. A moderate correlation was obtained between UAVSfM DBH and field measurements (R2 = 0.5955) for homogenous forest structures, as well as between UAVSfM DBH and TLSLiDAR DBH (R2 = 0.5237), but a low correlation between UAVSfM DBH and UAVLiDAR DBH (R2 = 0.1114). This research has demonstrated that UAVSfM can be adequately used as a cheaper alternative in forestry management compared to more highcost and accurate LiDAR, as well as traditional technologies, depending on accuracy requirements.
86

Forensic Validation of 3D models

Lindberg, Mimmi January 2020 (has links)
3D reconstruction can be used in forensic science to reconstruct crime scenes and objects so that measurements and further information can be acquired off-site. It is desirable to use image based reconstruction methods but there is currently no procedure available for determining the uncertainty of such reconstructions. In this thesis the uncertainty of Structure from Motion is investigated. This is done by exploring the literature available on the subject and compiling the relevant information in a literary summary. Also, Monte Carlo simulations are conducted to study how the feature position uncertainty affects the uncertainty of the parameters estimated by bundle adjustment. The experimental results show that poses of cameras that contain few image correspondences are estimated with higher uncertainty. The poses of such cameras are estimated with lesser uncertainty if they have feature correspondences in cameras that contain a higher number of projections.
87

Nástroj pro 3D rekonstrukci z dat z více typů senzorů / Scalable Multisensor 3D Reconstruction Framework

Šolony, Marek January 2017 (has links)
Realistické 3D modely prostředí jsou užitečné v mnoha oborech, od inspekce přírodních struktur nebo budov, navigace robotů a tvorby map až po filmový průmysl při zaměřování scény nebo pro integraci speciálních efektů. Je běžné při snímání takové scény použít různých typů senzorů, jako například monokulární, stereoskopické nebo sférické kamery nebo 360° laserové skenery, pro dosažení velkého pokrytí scény. Výhoda laserových skenerů a sférických kamer spočívá právě v zachycení celého okolí jako jeden celistvý snímek. Použitím konvenčních monokulárních kamer lze naproti tomu snadno pokrýt zastíněné části scény nebo zachytit detaily. Proces 3D rekonstrukce sestává ze tří kroků: snímání, zpracování dat a registrace a zpřesnění rekonstrukce. Přínos této disertační práce je podrobná analýza metod registrace obrazu ze sférických a planárních kamer a implementace unifikovaného systému sensorů a měření pro 3D rekonstrukci, jež umožňuje rekonstrukci ze všech dostupných dat. Hlavní výhodou navržené unifikované reprezentace je, že umožňuje společně optimalizovat všechny pózy sensorů a bodů scény aplikací nelineárních optimalizačních metod. Tím dosahuje lepší přesnosti rekonstrukce aniž by se výrazně zvýšily výpočetní nároky.
88

Interrogating Data-integrity from Archaeological Surface Surveys Using Spatial Statistics and Geospatial Analysis: A Case Study from Stelida, Naxos

Pitt, Yorgan January 2020 (has links)
The implementation and application of Geographic Information Systems (GIS) and spatial analyses have become standard practice in many archaeological projects. In this study, we demonstrate how GIS can play a crucial role in the study of taphonomy, i.e., understanding the processes that underpinned the creation of archaeological deposits, in this case the distribution of artifacts across an archeological site. The Stelida Naxos Archeological Project (SNAP) is focused on the exploration of a Paleolithic-Mesolithic stone tool quarry site located on the island of Naxos, Greece. An extensive pedestrian survey was conducted during the 2013 and 2014 archeological field seasons. An abundance of lithic material was collected across the surface, with some diagnostic pieces dating to more than 250 Kya. Spatial statistical analysis (Empirical Bayesian Kriging) was conducted on the survey data to generate predictive distribution maps for the site. This study then determined the contextual integrity of the surface artifact distributions through a study of geomorphic processes. A digital surface model (DSM) of the site was produced using Unmanned Aerial Vehicle (UAV) aerial photography and Structure from Motion (SfM) terrain modeling. The DSM employed to develop a Revised Universal Soil Loss Equation (RUSLE) model and hydrological flow models. The model results provide important insights into the site geomorphological processes and allow categorization of the diagnostic surface material locations based on their contextual integrity. The GIS analysis demonstrates that the surface artifact distribution has been significantly altered by post-depositional geomorphic processes, resulting in an overall low contextual integrity of surface artifacts. Conversely, the study identified a few areas with high contextual integrity, loci that represent prime locations for excavation. The results from this study will not only be used to inform and guide further development of the archeological project (as well as representing significant new data in its own right), but also contributes to current debates in survey archaeology, and in mapping and prospection more generally. This project demonstrates the benefit of using spatial analysis as a tool for planning of pedestrian surveys and for predictive mapping of artifact distributions prior to archaeological excavations. / Thesis / Master of Science (MSc)
89

Evaluation of Unmanned Aerial Vehicle Flight Parameters That Impact Stockpile Volume Computations

Hastings, Nicole Marie 08 December 2023 (has links) (PDF)
Stockpile volumes are monitored by their companies as the product (i.e., aggregate, soil) is moved in and out of the facilities to ensure minimal product loss. Companies are mandated to report product movement to the government to ensure that the aggregate and soil is going where it is supposed to go. Many tools are used to monitor stockpile volumes including truck scales (to weigh incoming and outgoing trucks), light detection and ranging (LiDAR), Global Navigation Satellite System (GNSS) equipment, and unmanned aerial vehicle (UAV) photogrammetry. These processes give a good estimate of stockpile volumes. Errors in these estimates typically come from transportation and natural degradation of the stockpile. Not much research has been done on the best practices when using UAV photogrammetry to find the volume of a stockpile. Most recent research is about specific situations for finding a stockpile volume and whether UAV photogrammetry is as good as traditional methods for finding stockpile's volume. This study focuses on the effect of the flight height, camera angle, and presence of ground control points (GCP) in processing on the final volume calculated. Six UAV flights were done for this study; three different flight heights and two different camera angles. Additionally, the UAV reconstructed models were run with and without the GCPs to give twelve reconstructed volumes to examine for statistically significant differences. A similar study was done by Tucci et. al\cite{Tucci2019} where they focused on only camera orientation and found that the camera orientation was not statistically significant. We found that the differences between if GCPs in processing or not and between each flight elevation was statistically insignificant. We found that the differences in camera orientation between nadir and oblique were statistically significant. These different results could be due to many variables including differences in the dataset, differences in the statistical analysis, or the difference in stockpile size. We recommend using a high flight elevation and oblique photos to develop an efficient, accurate model.
90

Dissertation_Meghdad_revised_2.pdf

Seyyed Meghdad Hasheminasab (14030547) 30 November 2022 (has links)
<p> </p> <p>Modern remote sensing platforms such as unmanned aerial vehicles (UAVs) that can carry a variety of sensors including RGB frame cameras, hyperspectral (HS) line cameras, and LiDAR sensors are commonly used in several application domains. In order to derive accurate products such as point clouds and orthophotos, sensors’ interior and exterior orientation parameters (IOP and EOP) must be established. These parameters are derived/refined in a triangulation framework through minimizing the discrepancy between conjugate features extracted from involved datasets. Existing triangulation approaches are not general enough to deal with varying nature of data from different sensors/platforms acquired in diverse environmental conditions. This research develops a generic triangulation framework that can handle different types of primitives (e.g., point, linear, and/or planar features), and sensing modalities (e.g., RGB cameras, HS cameras, and/or LiDAR sensors) for delivering accurate products under challenging conditions with a primary focus on digital agriculture and stockpile monitoring application domains. </p>

Page generated in 0.1209 seconds