• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 16
  • 9
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 137
  • 137
  • 132
  • 39
  • 38
  • 32
  • 32
  • 28
  • 25
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Characterization of Landslide Geometry and Movement Near Black Canyon City, Arizona

January 2016 (has links)
abstract: I investigate the Black Canyon City landslide (BCC landslide), a prominent deep-seated landslide located northeast of Black Canyon City, Arizona. Although the landslide does not appear to pose a significant hazard to structures, its prominent features and high topographic relief make it an excellent site to study the geologic setting under which such features develop. This study has the potential to contribute toward understanding the landscape evolution in similar geologic and topographic settings, and for characterizing the underlying structural processes of this deep-seated feature. We use field and remotely-based surface geology and geomorphological mapping to characterize the landslide geometry and its surface displacement. We use the Structure from Motion (SfM) method to generate a 0.2 m resolution digital elevation model and rectified ortho-photo imagery from unmanned aerial vehicle (UAV) - and balloon-based images and used them as the base map for our mapping. The ~0.6 km2 landslide is easily identified through remotely-sensed imagery and in the field because of the prominent east-west trending fractures defining its upper extensional portion. The landslide displaces a series of Early and Middle Miocene volcanic and sedimentary rocks. The main head scarp is ~600 m long and oriented E-W with some NW-SE oriented minor scarps. Numerous fractures varying from millimeters to meters in opening were identified throughout the landslide body (mostly with longitudinal orientation). The occurrence of a distinctive layer of dark reddish basalt presents a key displaced marker to estimate the long-term deformation of the slide mass. Using this marker, the total vertical displacement is estimated to be ~70 m, with maximum movement of ~95 m to the SE. This study indicates that the landslide motion is translational with a slight rotational character. We estimate the rate of the slide motion by resurvey of monuments on and off the slide, and examination of disturbed vegetation located along the fractures. The analysis indicates a slow integrated average landslide velocity of 10-60 mm/yr. The slide motion is probably driven during annual wet periods when increased saturation of the slide mass weakens the basal slip surface and the overall mass of the slide is increased. Results from our study suggest that the slide is stable and does not pose significant hazard for the surrounding area given no extreme changes in the environmental condition. Although the landslide is categorized as very slow (according to Cruden and Varnes, 1996), monitoring the landslide is still necessary. / Dissertation/Thesis / Masters Thesis Geological Sciences 2016
102

Infrared image-based modeling and rendering

Wretstam, Oskar January 2017 (has links)
Image based modeling using visual images has undergone major development during the earlier parts of the 21th century. In this thesis a system for automated uncalibrated scene reconstruction using infrared images is implemented and tested. An automated reconstruction system could serve to simplify thermal inspection or as a demonstration tool. Thermal images will in general have lower resolution, less contrast and less high frequency content as compared to visual images. These characteristics of infrared images further complicates feature extraction and matching, key steps in the reconstruction process. In order to remedy the complication preprocessing methods are suggested and tested as well. Infrared modeling will also impose additional demands on the reconstruction as it is of importance to maintain thermal accuracy of the images in the product. Three main results are obtained from this thesis. Firstly, it is possible to obtain camera calibration and pose as well as a sparse point cloud reconstruction from an infrared image sequence using the suggested implementation. Secondly, correlation of thermal measurements from the images used to reconstruct three dimensional coordinates is presented and analyzed. Lastly, from the preprocessing evaluation it is concluded that the tested methods are not suitable. The methods will increase computational cost while improvements in the model are not proportional. / Bildbaserad modellering med visuella bilder har genomgått en stor utveckling under de tidigare delarna av 2000-talet. Givet en sekvens bestående av vanliga tvådimensionella bilder på en scen från olika perspektiv så är målet att rekonstruera en tredimensionell modell. I denna avhandling implementeras och testas ett system för automatiserad okalibrerad scenrekonstruktion från infraröda bilder. Okalibrerad rekonstruktion refererar till det faktum att parametrar för kameran, såsom fokallängd och fokus, är okända och enbart bilder används som indata till systemet. Ett stort användingsområde för värmekameror är inspektion. Temperaturskillnader i en bild kan indikera till exempel dålig isolering eller hög friktion. Om ett automatiserat system kan skapa en tredimensionell modell av en scen så kan det bidra till att förenkla inspektion samt till att ge en bättre överblick. Värmebilder kommer generellt att ha lägre upplösning, mindre kontrast och mindre högfrekvensinnehåll jämfört med visuella bilder. Dessa egenskaper hos infraröda bilder komplicerar extraktion och matchning av punkter i bilderna vilket är viktiga steg i rekonstruktionen. För att åtgärda komplikationen förbehandlas bilderna innan rekonstruktionen, ett urval av metoder för förbehandling har testats. Rekonstruktion med värmebilder kommer också att ställa ytterligare krav på rekonstruktionen, detta eftersom det är viktigt att bibehålla termisk noggrannhet från bilderna i modellen. Tre huvudresultat erhålls från denna avhandling. För det första är det möjligt att beräkna kamerakalibrering och position såväl som en gles rekonstruktion från en infraröd bildsekvens, detta med implementationen som föreslås i denna avhandling. För det andra presenteras och analyseras korrelationen för temperaturmätningar i bilderna som används för rekonstruktionen. Slutligen så visar den testade förbehandlingen inte en förbättring av rekonstruktionen som är propotionerlig med den ökade beräkningskomplexiteten.
103

Implementation and evaluation of a 3D tracker / Implementation och utvärdering av en 3D tracker

Robinson, Andreas January 2014 (has links)
Many methods have been developed for visual tracking of generic objects. The vast majority of these assume the world is two-dimensional, either ignoring the third dimension or only dealing with it indirectly. This causes difficulties for the tracker when the target approaches or moves away from the camera, is occluded or moves out of the camera frame. Unmanned aerial vehicles (UAVs) are increasingly used in civilian applications and some of these will undoubtedly carry tracking systems in the future. As they move around, these trackers will encounter both scale changes and occlusions. To improve the tracking performance in these cases, the third dimension should be taken into account. This thesis extends the capabilities of a 2D tracker to three dimensions, with the assumption that the target moves on a ground plane. The position of the tracker camera is established by matching the video it produces to a sparse point-cloud map built with off-the-shelf structure-from-motion software. A target is tracked with a generic 2D tracker and subsequently positioned on the ground. Should the target disappear from view, its motion on the ground is predicted. In combination, these simple techniques are shown to improve the robustness of a tracking system on a moving platform under target scale changes and occlusions.
104

3D structure estimation from image stream in urban environment / Estimation de la structure 3D d'un environnement urbain à partir d'un flux vidéo

Nawaf, Mohamad Motasem 05 December 2014 (has links)
Dans le domaine de la vision par ordinateur, l’estimation de la structure d’une scène 3D à partir d’images 2D constitue un problème fondamental. Parmi les applications concernées par cette problématique, nous nous sommes intéressés dans le cadre de cette thèse à la modélisation d’un environnement urbain. Nous nous sommes intéressés à la reconstruction de scènes 3D à partir d’images monoculaires générées par un véhicule en mouvement. Ici, plusieurs défis se posent à travers les différentes étapes de la chaine de traitement inhérente à la reconstruction 3D. L’un de ces défis vient du fait de l’absence de zones suffisamment texturées dans certaines scènes urbaines, d’où une reconstruction 3D (un nuage de points 3D) trop éparse. De plus, du fait du mouvement du véhicule, d’une image à l’autre il n’y a pas toujours un recouvrement suffisant entre différentes vues consécutives d’une même scène. Dans ce contexte, et ce afin de lever les verrous ci-dessus mentionnés, nous proposons d’estimer, de reconstruire, la structure d’une scène 3D par morceaux en se basant sur une hypothèse de planéité. Nous proposons plusieurs améliorations à la chaine de traitement associée à la reconstruction 3D. D’abord, afin de structurer, de représenter, la scène sous la forme d’entités planes nous proposons une nouvelle méthode de reconstruction 3D, basée sur le regroupement de pixels similaires (superpixel segmentation), qui à travers une représentation multi-échelle pondérée fusionne les informations de couleur et de mouvement. Cette méthode est basée sur l’estimation de la probabilité de discontinuités locales aux frontières des régions calculées à partir du gradient (gradientbased boundary probability estimation). Afin de prendre en compte l’incertitude liée à l’estimation du mouvement, une pondération par morceaux est appliquée à chaque pixel en fonction de cette incertitude. Cette méthode génère des regroupements de pixels (superpixels) non contraints en termes de taille et de forme. Pour certaines applications, telle que la reconstruction 3D à partir d’une séquence d’images, des contraintes de taille sont nécessaires. Nous avons donc proposé une méthode qui intègre à l’algorithme SLIC (Simple Linear Iterative Clustering) l’information de mouvement. L’objectif étant d’obtenir une reconstruction 3D plus dense qui estime mieux la structure de la scène. Pour atteindre cet objectif, nous avons aussi introduit une nouvelle distance qui, en complément de l’information de mouvement et de données images, prend en compte la densité du nuage de points. Afin d’augmenter la densité du nuage de points utilisé pour reconstruire la structure de la scène sous la forme de surfaces planes, nous proposons une nouvelle approche qui mixte plusieurs méthodes d’appariement et une méthode de flot optique dense. Cette méthode est basée sur un système de pondération qui attribue un poids pré-calculé par apprentissage à chaque point reconstruit. L’objectif est de contrôler l’impact de ce système de pondération, autrement dit la qualité de la reconstruction, en fonction de la précision de la méthode d’appariement utilisée. Pour atteindre cet objectif, nous avons appliqué un processus des moindres carrés pondérés aux données reconstruites pondérées par les calculés par apprentissage, qui en complément de la segmentation par morceaux de la séquence d’images, permet une meilleure reconstruction de la structure de la scène sous la forme de surfaces planes. Nous avons également proposé un processus de gestion des discontinuités locales aux frontières de régions voisines dues à des occlusions (occlusion boundaries) qui favorise la coplanarité et la connectivité des régions connexes. L’ensemble des modèles proposés permet de générer une reconstruction 3D dense représentative à la réalité de la scène. La pertinence des modèles proposés a été étudiée et comparée à l’état de l’art. Plusieurs expérimentations ont été réalisées afin de démontrer, d’étayer, la validité de notre approche / In computer vision, the 3D structure estimation from 2D images remains a fundamental problem. One of the emergent applications is 3D urban modelling and mapping. Here, we are interested in street-level monocular 3D reconstruction from mobile vehicle. In this particular case, several challenges arise at different stages of the 3D reconstruction pipeline. Mainly, lacking textured areas in urban scenes produces low density reconstructed point cloud. Also, the continuous motion of the vehicle prevents having redundant views of the scene with short feature points lifetime. In this context, we adopt the piecewise planar 3D reconstruction where the planarity assumption overcomes the aforementioned challenges.In this thesis, we introduce several improvements to the 3D structure estimation pipeline. In particular, the planar piecewise scene representation and modelling. First, we propose a novel approach that aims at creating 3D geometry respecting superpixel segmentation, which is a gradient-based boundary probability estimation by fusing colour and flow information using weighted multi-layered model. A pixel-wise weighting is used in the fusion process which takes into account the uncertainty of the computed flow. This method produces non-constrained superpixels in terms of size and shape. For the applications that imply a constrained size superpixels, such as 3D reconstruction from an image sequence, we develop a flow based SLIC method to produce superpixels that are adapted to reconstructed points density for better planar structure fitting. This is achieved by the mean of new distance measure that takes into account an input density map, in addition to the flow and spatial information. To increase the density of the reconstructed point cloud used to performthe planar structure fitting, we propose a new approach that uses several matching methods and dense optical flow. A weighting scheme assigns a learned weight to each reconstructed point to control its impact to fitting the structure relative to the accuracy of the used matching method. Then, a weighted total least square model uses the reconstructed points and learned weights to fit a planar structure with the help of superpixel segmentation of the input image sequence. Moreover, themodel handles the occlusion boundaries between neighbouring scene patches to encourage connectivity and co-planarity to produce more realistic models. The final output is a complete dense visually appealing 3Dmodels. The validity of the proposed approaches has been substantiated by comprehensive experiments and comparisons with state-of-the-art methods
105

Learning objects model and context for recognition and localisation / Apprentissage de modèles et contextes d'objets pour la reconnaissance et la localisation

Manfredi, Guido 18 September 2015 (has links)
Cette thèse traite des problèmes de modélisation, reconnaissance, localisation et utilisation du contexte pour la manipulation d'objets par un robot. Le processus de modélisation se divise en quatre composantes : le système réel, les données capteurs, les propriétés à reproduire et le modèle. En spécifiant chacune des ces composantes, il est possible de définir un processus de modélisation adapté au problème présent, la manipulation d'objets par un robot. Cette analyse mène à l'adoption des descripteurs de texture locaux pour la modélisation. La modélisation basée sur des descripteurs de texture locaux a été abordé dans de nombreux travaux traitant de structure par le mouvement (SfM) ou de cartographie et localisation simultanée (SLAM). Les méthodes existantes incluent Bundler, Roboearth et 123DCatch. Pourtant, aucune de ces méthodes n'a recueilli le consensus. En effet, l'implémentation d'une approche similaire montre que ces outils sont difficiles d'utilisation même pour des utilisateurs experts et qu'ils produisent des modèles d'une haute complexité. Cette complexité est utile pour fournir un modèle robuste aux variations de point de vue. Il existe deux façons pour un modèle d'être robuste : avec le paradigme des vues multiple ou celui des descripteurs forts. Dans le paradigme des vues multiples, le modèle est construit à partir d'un grand nombre de points de vue de l'objet. Le paradigme des descripteurs forts compte sur des descripteurs résistants aux changements de points de vue. Les expériences réalisées montrent que des descripteurs forts permettent d'utiliser un faible nombre de vues, ce qui résulte en un modèle simple. Ces modèles simples n'incluent pas tout les point de vus existants mais les angles morts peuvent être compensés par le fait que le robot est mobile et peut adopter plusieurs points de vue. En se basant sur des modèles simples, il est possible de définir des méthodes de modélisation basées sur des images seules, qui peuvent être récupérées depuis Internet. A titre d'illustration, à partir d'un nom de produit, il est possible de récupérer des manières totalement automatiques des images depuis des magasins en ligne et de modéliser puis localiser les objets désirés. Même avec une modélisation plus simple, dans des cas réel ou de nombreux objets doivent être pris en compte, il se pose des problèmes de stockage et traitement d'une telle masse de données. Cela se décompose en un problème de complexité, il faut traiter de nombreux modèles rapidement, et un problème d'ambiguïté, des modèles peuvent se ressembler. L'impact de ces deux problèmes peut être réduit en utilisant l'information contextuelle. Le contexte est toute information non issue des l'objet lui même et qui aide a la reconnaissance. Ici deux types de contexte sont abordés : le lieu et les objets environnants. Certains objets se trouvent dans certains endroits particuliers. En connaissant ces liens lieu/objet, il est possible de réduire la liste des objets candidats pouvant apparaître dans un lieu donné. Par ailleurs l'apprentissage du lien lieu/objet peut être fait automatiquement par un robot en modélisant puis explorant un environnement. L'information appris peut alors être fusionnée avec l'information visuelle courante pour améliorer la reconnaissance. Dans les cas des objets environnants, un objet peut souvent apparaître au cotés d'autres objets, par exemple une souris et un clavier. En connaissant la fréquence d'apparition d'un objet avec d'autres objets, il est possible de réduire la liste des candidats lors de la reconnaissance. L'utilisation d'un Réseau de Markov Logique est particulièrement adaptée à la fusion de ce type de données. Cette thèse montre la synergie de la robotique et du contexte pour la modélisation, reconnaissance et localisation d'objets. / This Thesis addresses the modeling, recognition, localization and use of context for objects manipulation by a robot. We start by presenting the modeling process and its components: the real system, the sensors' data, the properties to reproduce and the model. We show how, by specifying each of them, one can define a modeling process adapted to the problem at hand, namely object manipulation by a robot. This analysis leads us to the adoption of local textured descriptors for object modeling. Modeling with local textured descriptors is not a new concept, it is the subject of many Structure from Motion (SfM) or Simultaneous Localization and Mapping (SLAM) works. Existing methods include bundler, roboearth modeler and 123DCatch. Still, no method has gained widespread adoption. By implementing a similar approach, we show that they are hard to use even for expert users and produce highly complex models. Such complex techniques are necessary to guaranty the robustness of the model to view point change. There are two ways to handle the problem: the multiple views paradigm and the robust features paradigm. The multiple views paradigm advocate in favor of using a large number of views of the object. The robust feature paradigm relies on robust features able to resist large view point changes. We present a set of experiments to provide an insight into the right balance between both. By varying the number of views and using different features we show that small and fast models can provide robustness to view point changes up to bounded blind spots which can be handled by robotic means. We propose four different methods to build simple models from images only, with as little a priori information as possible. The first one applies to planar or piecewise planar objects and relies on homographies for localization. The second approach is applicable to objects with simple geometry, such as cylinders or spheres, but requires many measures on the object. The third method requires the use of a calibrated 3D sensor but no additional information. The fourth technique doesn't need a priori information at all. We apply this last method to autonomous grocery objects modeling. From images automatically retrieved from a grocery store website, we build a model which allows recognition and localization for tracking. Even using light models, real situations ask for numerous object models to be stored and processed. This poses the problems of complexity, processing multiple models quickly, and ambiguity, distinguishing similar objects. We propose to solve both problems by using contextual information. Contextual information is any information helping the recognition which is not directly provided by sensors. We focus on two contextual cues: the place and the surrounding objects. Some objects are mainly found in some particular places. By knowing the current place, one can restrict the number of possible identities for a given object. We propose a method to autonomously explore a previously labeled environment and establish a correspondence between objects and places. Then this information can be used in a cascade combining simple visual descriptors and context. This experiment shows that, for some objects, recognition can be achieved with as few as two simple features and the location as context. The objects surrounding a given object can also be used as context. Objects like a keyboard, a mouse and a monitor are often close together. We use qualitative spatial descriptors to describe the position of objects with respect to their neighbors. Using a Markov Logic Network, we learn patterns in objects disposition. This information can then be used to recognize an object when surrounding objects are already identified. This Thesis stresses the good match between robotics, context and objects recognition.
106

Using Structure-from-Motion Technology to Compare Coral Coverage on Restored vs. Unrestored Reefs

Rosing, Trina 17 June 2021 (has links)
No description available.
107

Mobilní aplikace pro 3D rekonstrukci / Mobile application for 3D reconstruction

Krátký, Martin January 2021 (has links)
The aim of this master thesis is to create mobile application for spatial reconstruction. Thesis describes image processing methods suitable for solving this problem. Available platforms for creating mobile application are described. The parameters of the measured scenes are defined. A mobile application containing the described methods is created. The application is tested by reconstruction of objects in different conditions.
108

Approches 2D/2D pour le SFM à partir d'un réseau de caméras asynchrones / 2D/2D approaches for SFM using an asynchronous multi-camera network

Mhiri, Rawia 14 December 2015 (has links)
Les systèmes d'aide à la conduite et les travaux concernant le véhicule autonome ont atteint une certaine maturité durant ces dernières aimées grâce à l'utilisation de technologies avancées. Une étape fondamentale pour ces systèmes porte sur l'estimation du mouvement et de la structure de l'environnement (Structure From Motion) pour accomplir plusieurs tâches, notamment la détection d'obstacles et de marquage routier, la localisation et la cartographie. Pour estimer leurs mouvements, de tels systèmes utilisent des capteurs relativement chers. Pour être commercialisés à grande échelle, il est alors nécessaire de développer des applications avec des dispositifs bas coûts. Dans cette optique, les systèmes de vision se révèlent une bonne alternative. Une nouvelle méthode basée sur des approches 2D/2D à partir d'un réseau de caméras asynchrones est présentée afin d'obtenir le déplacement et la structure 3D à l'échelle absolue en prenant soin d'estimer les facteurs d'échelle. La méthode proposée, appelée méthode des triangles, se base sur l'utilisation de trois images formant un triangle : deux images provenant de la même caméra et une image provenant d'une caméra voisine. L'algorithme admet trois hypothèses: les caméras partagent des champs de vue communs (deux à deux), la trajectoire entre deux images consécutives provenant d'une même caméra est approximée par un segment linéaire et les caméras sont calibrées. La connaissance de la calibration extrinsèque entre deux caméras combinée avec l'hypothèse de mouvement rectiligne du système, permet d'estimer les facteurs d'échelle absolue. La méthode proposée est précise et robuste pour les trajectoires rectilignes et présente des résultats satisfaisants pour les virages. Pour affiner l'estimation initiale, certaines erreurs dues aux imprécisions dans l'estimation des facteurs d'échelle sont améliorées par une méthode d'optimisation : un ajustement de faisceaux local appliqué uniquement sur les facteurs d'échelle absolue et sur les points 3D. L'approche présentée est validée sur des séquences de scènes routières réelles et évaluée par rapport à la vérité terrain obtenue par un GPS différentiel. Une application fondamentale dans les domaines d'aide à la conduite et de la conduite automatisée est la détection de la route et d'obstacles. Pour un système asynchrone, une première approche pour traiter cette application est présentée en se basant sur des cartes de disparité éparses. / Driver assistance systems and autonomous vehicles have reached a certain maturity in recent years through the use of advanced technologies. A fundamental step for these systems is the motion and the structure estimation (Structure From Motion) that accomplish several tasks, including the detection of obstacles and road marking, localisation and mapping. To estimate their movements, such systems use relatively expensive sensors. In order to market such systems on a large scale, it is necessary to develop applications with low cost devices. In this context, vision systems is a good alternative. A new method based on 2D/2D approaches from an asynchronous multi-camera network is presented to obtain the motion and the 3D structure at the absolute scale, focusing on estimating the scale factors. The proposed method, called Triangle Method, is based on the use of three images forming a. triangle shape: two images from the same camera and an image from a neighboring camera. The algorithrn has three assumptions: the cameras share common fields of view (two by two), the path between two consecutive images from a single camera is approximated by a line segment, and the cameras are calibrated. The extrinsic calibration between two cameras combined with the assumption of rectilinear motion of the system allows to estimate the absolute scale factors. The proposed method is accurate and robust for straight trajectories and present satisfactory results for curve trajectories. To refine the initial estimation, some en-ors due to the inaccuracies of the scale estimation are improved by an optimization method: a local bundle adjustment applied only on the absolute scale factors and the 3D points. The presented approach is validated on sequences of real road scenes, and evaluated with respect to the ground truth obtained through a differential GPS. Finally, another fundamental application in the fields of driver assistance and automated driving is road and obstacles detection. A method is presented for an asynchronous system based on sparse disparity maps
109

Comparing Structure from Motion Photogrammetry and Computer Vision for Low-Cost 3D Cave Mapping: Tipton-Haynes Cave, Tennessee

Elmore, Clinton 01 August 2019 (has links)
Natural caves represent one of the most difficult environments to map with modern 3D technologies. In this study I tested two relatively new methods for 3D mapping in Tipton-Haynes Cave near Johnson City, Tennessee: Structure from Motion Photogrammetry and Computer Vision using Tango, an RGB-D (Red Green Blue and Depth) technology. Many different aspects of these two methods were analyzed with respect to the needs of average cave explorers. Major considerations were cost, time, accuracy, durability, simplicity, lighting setup, and drift. The 3D maps were compared to a conventional cave map drafted with measurements from a modern digital survey instrument called the DistoX2, a clinometer, and a measuring tape. Both 3D mapping methods worked, but photogrammetry proved to be too time consuming and laborious for capturing more than a few meters of passage. RGB-D was faster, more accurate, and showed promise for the future of low-cost 3D cave mapping.
110

Potentialities of Unmanned Aerial Vehicles in Hydraulic Modelling : Drone remote sensing through photogrammetry for 1D flow numerical modelling

Reali, Andrea January 2018 (has links)
In civil and environmental engineering numerous are the applications that require prior collection of data on the ground. When it comes to hydraulic modelling, valuable topographic and morphology features of the region are one of the most useful of them, yet often unavailable, expensive or difficult to obtain. In the last few years UAVs entered the scene of remote sensing tools used to deliver such information and their applications connected to various photo-analysis techniques have been tested in specific engineering fields, with promising results. The content of this thesis aims contribute to the growing literature on the topic, assessing the potentialities of UAV and SfM photogrammetry analysis in developing terrain elevation models to be used as input data for numerical flood modelling. This thesis covered all phases of the engineering process, from the survey to the implementation of a 1D hydraulic model based on the photogrammetry derived topography The area chosen for the study was the Limpopo river. The challenging environment of the Mozambican inland showed the great advantages of this technology, which allowed a precise and fast survey easily overcoming risks and difficulties. The test on the field was also useful to expose the current limits of the drone tool in its high susceptibility to weather conditions, wind and temperatures and the restricted battery capacity which did not allow flight longer than 20 minutes. The subsequent photogrammetry analysis showed a high degree of dependency on a number of ground control points and the need of laborious post-processing manipulations in order to obtain a reliable DEM and avoid the insurgence of dooming effects. It revealed, this way, the importance of understanding the drone and the photogrammetry software as a single instrument to deliver a quality DEM and consequently the importance of planning a survey photogrammetry-oriented by the adoption of specific precautions. Nevertheless, the DEM we produced presented a degree of spatial resolution comparable to the one high precision topography sources. Finally, considering four different topography sources (SRTM DEM 30 m, lidar DEM 1 m, drone DEM 0.6 m, total station&RTK bathymetric cross sections o.5 m) the relationship between spatial accuracy and water depth estimation was tested through 1D, steady flow models on HECRAS. The performances of each model were expressed in terms of mean absolute error (MAE) in water depth estimations of the considered model compared to the one based on the bathymetric cross-sections. The result confirmed the potentialities of the drone for hydraulic engineering applications, with MAE differences between lidar, bathymetry and drone included within 1 m. The calibration of SRTM, Lidar and Drone based models to the bathymetry one demonstrated the relationship between geometry detail and roughness of the cross-sections, with a global improvement in the MAE, but more pronounced for the coarse geometry of SRTM.

Page generated in 0.0961 seconds