• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 1
  • Tagged with
  • 9
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Struktur und elektrischer Widerstand von (Al[5,5]Cu[1])[100-x] Li[x] – Schichten

Lang, Michael 05 December 2005 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit sollte der Übergang von amorphen AlCuLi-Schichten in die quasikristalline Phase untersucht werden. Dafür wurden die atomaren Struktur und der elektrische Widerstand an in-situ hergestellten amorphen (Al[5,5]Cu[1])[100-x] Li[x]- Schichten im Temperaturbereich 2 K < T < 500 K gemessen. Zur Herstellung der hoch reaktiven dünnen Schichten wurde unter Ar-Reinstgasatmosphäre und Ultrahochvakuum präpariert. Die Messergebnisse entstanden ebenfalls unter UHV-Bedingungen. In amorphem (Al[5,5]Cu[1])[100-x] Li[X] positionieren sich die Atome in die Friedelminima des Paarpotentials. Bis ca. 26 at% Li geschieht dies überwiegend über einen Hybridisierungseffekt der Elektronen aus dem Valenzband in die unbesetzten Cu-d-Zustände. Ab 26 at% Li wird das zunehmend durch eine Erhöhung der Atomzahldichte erreicht. Um die Verkleinerung des Atomvolumens zu erreichen, gibt das Li sein äußeres Elektron ab und verringert damit seinen Radius. Das Maximum in der Interferenzfunktion I(K) bei größeren K-Werten verschiebt parallel zum Durchmesser der Fermikugel 2kF und ist dadurch als elektronisch induziert zu erkennen. Es zeigen sich elektronische Transporteigenschaften, die auch schon bei anderen Systemen beobachtet werden konnten (NaSn, AlCuFe). Im Bereich mit mehr als 50at% Li verschwindet die Dichteanomalie wieder und die Atome befinden sich auch ohne Änderung des Volumens nahe den Friedelminima. Allerdings verliert die Legierung dabei an Stabilität. Das System verhält sich hier ähnlich wie vergleichbare Edelmetall-Polyvalentelement-Legierungen.
2

Untersuchung von yttriumstabilisiertem Hafniumoxid als Isolatorschicht für DRAM-Kondensatoren / Investigation of yttrium oxide stabilized hafnium oxide as dielectric film for DRAM capacitors

Gluch, Jürgen 28 November 2011 (has links) (PDF)
In der vorliegenden Arbeit wird die grundsätzliche Eignung von yttriumstabilisiertem Hafniumoxidschichten als neues Dielektrikum für Speicherkondensatoren in dynamischen Halbleiterspeichern (DRAM) untersucht. Bei diesem Werkstoff handelt es sich um einen high-k Isolator der neuen Generation mit großem anwendungstechnischem Potential zur Substitution der seit vier Jahrzehnten eingesetzten siliciumbasierten Materialien. Daraus abgeleitet ergibt sich die Aufgabenstellung einer umfassenden Charakterisierung der praxisrelevanten Eigenschaften der Oxidschicht, umfassend in dem Sinne, dass aus dem Ergebnis eine wissenschaftlich fundierte Beurteilung zu den Aussichten einer Überführung in die Produktion abgeleitet werden kann. Es wird aufgezeigt, dass der Wechsel zu high-k Isolatoren erhebliche technische Neuerungen voraussetzt und weitere Entwicklungsarbeit nötig ist. Zusammenfassend kann erstmals die Eignung der ALD-Technik zur Herstellung dünnster yttriumstabilisierter Hafniumoxidschichten und deren Verwendung als Isolatorwerkstoff in zukünftigen mikroelektronischen Speicherkondensatoren anhand einer umfangreichen und anwendungstechnisch fokussierten Mikrostrukturcharakterisierung nachgewiesen werden. / This thesis investigates the basic suitability of yttrium stabilized hafnium oxide as a new dielectric for storage capacitors in dynamic random access memory (DRAM) semiconductor devices. This material is a so-called high- insulator with high dielectric constant. It is a good candidate to replace the silicon-based materials that are used for four decades now. Therefore it is necessary to extensively investigate selected properties of the oxide material. Extensively in terms of significant results that enable or object the applicability for the production process. It shows that the shift to high-insulators requires significant technological innovations and that further development work is necessary. The suitability of the ALD technique for depositing thin films of yttrium oxide and hafnium oxide is identified. The suitability of yttrium stabilized hafnium oxide layers as a dielectric material in future microelectronic storage capacitors can be given for the first time.
3

Untersuchung von yttriumstabilisiertem Hafniumoxid als Isolatorschicht für DRAM-Kondensatoren: Untersuchung von yttriumstabilisiertem Hafniumoxid als Isolatorschicht für DRAM-Kondensatoren

Gluch, Jürgen 27 October 2011 (has links)
In der vorliegenden Arbeit wird die grundsätzliche Eignung von yttriumstabilisiertem Hafniumoxidschichten als neues Dielektrikum für Speicherkondensatoren in dynamischen Halbleiterspeichern (DRAM) untersucht. Bei diesem Werkstoff handelt es sich um einen high-k Isolator der neuen Generation mit großem anwendungstechnischem Potential zur Substitution der seit vier Jahrzehnten eingesetzten siliciumbasierten Materialien. Daraus abgeleitet ergibt sich die Aufgabenstellung einer umfassenden Charakterisierung der praxisrelevanten Eigenschaften der Oxidschicht, umfassend in dem Sinne, dass aus dem Ergebnis eine wissenschaftlich fundierte Beurteilung zu den Aussichten einer Überführung in die Produktion abgeleitet werden kann. Es wird aufgezeigt, dass der Wechsel zu high-k Isolatoren erhebliche technische Neuerungen voraussetzt und weitere Entwicklungsarbeit nötig ist. Zusammenfassend kann erstmals die Eignung der ALD-Technik zur Herstellung dünnster yttriumstabilisierter Hafniumoxidschichten und deren Verwendung als Isolatorwerkstoff in zukünftigen mikroelektronischen Speicherkondensatoren anhand einer umfangreichen und anwendungstechnisch fokussierten Mikrostrukturcharakterisierung nachgewiesen werden.:Kurzbeschreibung Abstract Abkürzungen und Symbole 1. Einleitung 1.1. Motivation 1.2. DRAM-Technik 1.3. Ziel der Arbeit 2. Grundlagen 2.1. Isolatorschichten mit hoher dielektrischer Konstante 2.2. Hafniumbasierte Isolatorschichten 2.3. Weitere elektrische Kenngrößen 2.3.1. Ladungsträgertransport in Isolatoren 2.3.2. Elektrische Zuverlässigkeit 2.4. Atomlagenabscheidung 2.4.1. Grundlagen der Atomlagenabscheidung 2.4.2. Abscheidung in Strukturen mit hohem Aspektverhältnis 2.5. Eigenspannungen 3. Experimentelle Methodik 3.1. Substrate und Schichtabscheidung 3.2. Wärmebehandlung 3.2.1. Muffelofen mit Quarzglasrohr 3.2.2. Schnelle thermische Bearbeitung 3.2.3. Wärmebehandlung unter Vakuum 3.3. Präparation der Proben für die Transmissionselektronenmikroskopie . 3.4. Physikalische Analysemethoden 3.4.1. Röntgenbeugung und -reflektometrie 3.4.2. Mikroskopische Verfahren 3.4.3. Spektroskopische Verfahren 3.4.4. Substratkrümmungsmessung 3.4.5. Elektrische Messverfahren 3.4.6. Weitere Methoden 4. Ergebnisse und Diskussion 4.1. Mikrostruktur ebener Hf-Y-O-Schichten 4.1.1. Schichtwachstum 4.1.2. Rauheit und Dichte 4.1.3. Elementzusammensetzung 4.1.4. Kristallinität 4.1.5. Kristallphasen 4.1.6. Schichteigenspannungen 4.1.7. Linearer thermischer Ausdehnungskoeffizient und biaxialer Modul 4.1.8. Grenzfläche zum Substrat und der TiN-Elektrode 4.1.9. Zusammenfassung 4.2. Mikrostruktur in beschichteten Löchern mit hohem Aspektverhältnis 4.2.1. Schichtdicke als Funktion der Lochtiefe 4.2.2. Mikrostruktur und Grenzfläche 4.2.3. Modellierung der Bedeckungstiefe 4.2.4. Zusammenfassung 4.3. Einfluss der Mikrostruktur auf die elektrischen Eigenschaften 4.3.1. C-V und I-V Messungen 4.3.2. CAFM-Messungen 4.3.3. Zusammenfassung 5. Zusammenfassung und Ausblick A. Anhang A.1. Probenherstellung A.1.1. Probenbezeichnung A.1.2. Datenerfassung, Archivierung A.1.3. Probenliste A.1.4. Beschichtungsablauf für Hf-Y-Mischoxidschichten A.2. Wärmebehandlung A.3. C-V- und I-V-Messungen B. Veröffentlichungsliste C. Danksagung D. Literaturverzeichnis E. Stichwortverzeichnis / This thesis investigates the basic suitability of yttrium stabilized hafnium oxide as a new dielectric for storage capacitors in dynamic random access memory (DRAM) semiconductor devices. This material is a so-called high- insulator with high dielectric constant. It is a good candidate to replace the silicon-based materials that are used for four decades now. Therefore it is necessary to extensively investigate selected properties of the oxide material. Extensively in terms of significant results that enable or object the applicability for the production process. It shows that the shift to high-insulators requires significant technological innovations and that further development work is necessary. The suitability of the ALD technique for depositing thin films of yttrium oxide and hafnium oxide is identified. The suitability of yttrium stabilized hafnium oxide layers as a dielectric material in future microelectronic storage capacitors can be given for the first time.:Kurzbeschreibung Abstract Abkürzungen und Symbole 1. Einleitung 1.1. Motivation 1.2. DRAM-Technik 1.3. Ziel der Arbeit 2. Grundlagen 2.1. Isolatorschichten mit hoher dielektrischer Konstante 2.2. Hafniumbasierte Isolatorschichten 2.3. Weitere elektrische Kenngrößen 2.3.1. Ladungsträgertransport in Isolatoren 2.3.2. Elektrische Zuverlässigkeit 2.4. Atomlagenabscheidung 2.4.1. Grundlagen der Atomlagenabscheidung 2.4.2. Abscheidung in Strukturen mit hohem Aspektverhältnis 2.5. Eigenspannungen 3. Experimentelle Methodik 3.1. Substrate und Schichtabscheidung 3.2. Wärmebehandlung 3.2.1. Muffelofen mit Quarzglasrohr 3.2.2. Schnelle thermische Bearbeitung 3.2.3. Wärmebehandlung unter Vakuum 3.3. Präparation der Proben für die Transmissionselektronenmikroskopie . 3.4. Physikalische Analysemethoden 3.4.1. Röntgenbeugung und -reflektometrie 3.4.2. Mikroskopische Verfahren 3.4.3. Spektroskopische Verfahren 3.4.4. Substratkrümmungsmessung 3.4.5. Elektrische Messverfahren 3.4.6. Weitere Methoden 4. Ergebnisse und Diskussion 4.1. Mikrostruktur ebener Hf-Y-O-Schichten 4.1.1. Schichtwachstum 4.1.2. Rauheit und Dichte 4.1.3. Elementzusammensetzung 4.1.4. Kristallinität 4.1.5. Kristallphasen 4.1.6. Schichteigenspannungen 4.1.7. Linearer thermischer Ausdehnungskoeffizient und biaxialer Modul 4.1.8. Grenzfläche zum Substrat und der TiN-Elektrode 4.1.9. Zusammenfassung 4.2. Mikrostruktur in beschichteten Löchern mit hohem Aspektverhältnis 4.2.1. Schichtdicke als Funktion der Lochtiefe 4.2.2. Mikrostruktur und Grenzfläche 4.2.3. Modellierung der Bedeckungstiefe 4.2.4. Zusammenfassung 4.3. Einfluss der Mikrostruktur auf die elektrischen Eigenschaften 4.3.1. C-V und I-V Messungen 4.3.2. CAFM-Messungen 4.3.3. Zusammenfassung 5. Zusammenfassung und Ausblick A. Anhang A.1. Probenherstellung A.1.1. Probenbezeichnung A.1.2. Datenerfassung, Archivierung A.1.3. Probenliste A.1.4. Beschichtungsablauf für Hf-Y-Mischoxidschichten A.2. Wärmebehandlung A.3. C-V- und I-V-Messungen B. Veröffentlichungsliste C. Danksagung D. Literaturverzeichnis E. Stichwortverzeichnis
4

Atomare Struktur und elektrischer Widerstand amorpher Na-Sn-Legierungen

Madel, Oliver 09 February 1999 (has links) (PDF)
Im Rahmen dieser Arbeit werden Untersuchungen der atomaren Struktur und des elektrischen Widerstands an in-situ hergestellten amorphen Na-Sn-Legierungen im Temperaturbereich 2K < T < 500K vorgestellt. Zur Herstellung der hochreaktiven duennen Schichten wird eine neu entwickelte Praeparationsmethode unter Reinstgasatmosphaere und Ultrahochvakuum benutzt. Die Messungen muessen im UHV durchgefuehrt werden. In amorphem Na-Sn gibt es zwei im Sinne von Hume-Rothery bzw. Peierls elektronisch stabilisierte Bereiche, die jeweils einer Phase zugeordnet werden koennen. In Phase I (0 <= x <= 50) koennen sich die Atome nur durch eine Erhoehung der Atomzahldichte, was einer Volumenverkleinerung entspricht, in die Friedelminima des Paarpotentials legen. Dazu gibt das Na sein aeusseres Elektron ab und verkleinert damit seinen Radius. Der zweite Peak im Strukturfaktor S(K) verschiebt hier parallel zum Durchmesser der Fermikugel und ist damit der elektronisch induzierte. Der Peak liegt sehr nahe beim Fermikugeldurchmesser. Dadurch ergeben sich starke Anomalien im elektronischen Transport, im mittleren Konzentrationsbereich macht das System sogar einen Metall-Isolator-Uebergang. In Phase II (60 <= x <= 73) liegen die Atome ohne Aenderung des Volumens in den Friedelminima. In der vorliegenden Arbeit wird davon ausgegangen, dass das Na eine Umgebung aufbaut bzw. findet, die der des reinen Na nahekommt. In Phase II ist der erste Peak in S(K) der elektronisch induzierte. Das System verhaelt sich hier aehnlich wie vergleichbare Edelmetall- Polyvalentelement-Legierungen, bei einer effektiven Valenz Z = 1.8e/a fallen der Peak und der Fermikugeldurchmesser exakt zusammen. In dieser Phase tritt aber in S(K) ein Prepeak bei kleinen Streuvektoren auf. In der elektronischen Zustandsdichte ergibt sich ein Pseudogap bei der Fermienergie und das Material wird ein schlechtes Metall. Im Ueberlappungsbereich (50 < x < 60) koexistieren beide Phasen nebeneinander. Dies wird durch ein in zwei Abstaende aufgespaltenes erstes Maximum in der Atomverteilungsfunktion deutlich. Die Atome besetzen durch ihre Umverteilung von der einen zur anderen Phase scheinbar auch die Positionen zwischen den Friedelminima.
5

Struktur und elektrischer Widerstand von (Al[5,5]Cu[1])[100-x] Li[x] – Schichten

Lang, Michael 29 November 2005 (has links)
Im Rahmen der vorliegenden Arbeit sollte der Übergang von amorphen AlCuLi-Schichten in die quasikristalline Phase untersucht werden. Dafür wurden die atomaren Struktur und der elektrische Widerstand an in-situ hergestellten amorphen (Al[5,5]Cu[1])[100-x] Li[x]- Schichten im Temperaturbereich 2 K < T < 500 K gemessen. Zur Herstellung der hoch reaktiven dünnen Schichten wurde unter Ar-Reinstgasatmosphäre und Ultrahochvakuum präpariert. Die Messergebnisse entstanden ebenfalls unter UHV-Bedingungen. In amorphem (Al[5,5]Cu[1])[100-x] Li[X] positionieren sich die Atome in die Friedelminima des Paarpotentials. Bis ca. 26 at% Li geschieht dies überwiegend über einen Hybridisierungseffekt der Elektronen aus dem Valenzband in die unbesetzten Cu-d-Zustände. Ab 26 at% Li wird das zunehmend durch eine Erhöhung der Atomzahldichte erreicht. Um die Verkleinerung des Atomvolumens zu erreichen, gibt das Li sein äußeres Elektron ab und verringert damit seinen Radius. Das Maximum in der Interferenzfunktion I(K) bei größeren K-Werten verschiebt parallel zum Durchmesser der Fermikugel 2kF und ist dadurch als elektronisch induziert zu erkennen. Es zeigen sich elektronische Transporteigenschaften, die auch schon bei anderen Systemen beobachtet werden konnten (NaSn, AlCuFe). Im Bereich mit mehr als 50at% Li verschwindet die Dichteanomalie wieder und die Atome befinden sich auch ohne Änderung des Volumens nahe den Friedelminima. Allerdings verliert die Legierung dabei an Stabilität. Das System verhält sich hier ähnlich wie vergleichbare Edelmetall-Polyvalentelement-Legierungen.
6

Untersuchungen zur Struktur von wassergelösten und an Hämatit sorbierten Uran(VI)-Komplexen mit aliphatischen (Hydroxy-) Carbonsäuren: Kombination verschiedener spektroskopischer Methoden mit Faktorenanalyse und quantenchemischen Berechnungen / Investigations on the molecular structure of water dissolved and hematite-sorbed uranium(VI) complexes with aliphatic (hydroxo-) carboxylic acids: Combination of several spectroscopic techniques with factor analysis and quantum chemical calculations

Lucks, Christian 15 May 2013 (has links) (PDF)
Im Mittelpunkt der in dieser Arbeit durchgeführten Untersuchungen steht die Aufklärung der Strukturen der Komplexe von Uran mit aliphatischen (Hydroxy-)Carbonsäuren als Liganden sowie die Strukturen, die bei Sorption von Uran an dem Eisenmineral Hämatit in An- und Abwesenheit organischer Säuren gebildet werden. Das ternäre System aus Hämatit, Uran(VI) und organischem Ligand ist sehr komplex. Daher ist es notwendig eine Aufspaltung in einfachere binäre Systeme vorzunehmen und die Ergebnisse dieser Teilsysteme heranzuziehen, um das komplexere ternäre System zu verstehen. Anhand der umfangreichen durchgeführten Arbeiten zu den wässrigen Uran(VI)-Komplexen können nun Rückschlüsse von der Struktur einer Carbonsäure auf die Struktur der gebildeten Uran(VI)-Komplexe in Abhängigkeit vom pH getroffen werden. Zuerst sollte festgehalten werden, dass Uran(VI) üblicherweise pentagonal-bipyramidale Komplexe ergibt. Das Pentaaquauranylion zeigt beispielsweise zwei axiale Sauerstoffatome (Oax) bei einem Abstand von 1,76 Å und fünf äquatoriale Sauerstoffatome (Oeq) bei einem Abstand von 2,40 Å, die von koordinierten Wassermolekülen stammen. Im Zuge der Komplexierung mit organischen Liganden werden die Wassermoleküle durch organische Liganden ersetzt, was zu messbaren Veränderungen der Bindungsabstände führt. Monocarbonsäuren bilden mit Ausnahme der Ameisensäure nacheinander mit steigendem pH 1:1-, 1:2- und 1:3-Komplexe. Die teilweise in der Literatur postulierten 1:4-Komplexe beschränken sich wahrscheinlich auf extrem hohe Ligandkonzentration (>>1 M) oder nicht-wässrige Lösungen (z. B. 1:4-U-ac-Komplex [Ryan 1967]). Anhand der Verringerung der spektralen Aufspaltung Δν der symmetrischen und antisymmetrischen Valenzschwingung der Carboxygruppe konnte für diese Komplexe eine bidentate Koordination nachgewiesen werden. Mittels EXAFS konnte die bidentate Struktur anhand einer Verlängerung des Oeq-Abstandes auf 2,47 Å im Falle der 1:3-Komplexe in den Systemen U-ac und U-prop bestätigt werden. Die Ameisensäure hingegen bildet monodentate Komplexe. Dies konnte durch eine Erhöhung von Δν und eine Verkürzung des Oeq-Abstandes gezeigt werden. Ursache für dieses Verhalten ist der fehlende +I-Effekt durch den organischen Rest, der unter anderem eine deutliche Erhöhung der Säurestärke im Falle der Ameisensäure nach sich zieht. Bei Bi- und Tricarbonsäuren bestimmt der Abstand der Carboxygruppen zueinander, welche Art der Koordinierung auftritt. Werden die Carboxygruppen durch maximal ein Kohlenstoffatom voneinander getrennt (Oxal- und Malonsäure) oder wird durch eine cis-Doppelbindung eine cis-Konfiguration der Carboxygruppen zueinander erzwungen (Maleinsäure), treten 1:1- und 1:2 , sowie für Oxalsäure auch 1:3-Komplexe mit chelatartiger Koordinierung auf. Dies wird durch eine Erhöhung von Δν und eine Verringerung von r(U-Oeq) auf 2,36 Å (1:2-Komplexe) untermauert. Liegen mindestens zwei Kohlenstoffatome zwischen den Carboxygruppen (Bernsteinsäure, Tricarballylsäure), so bilden sich überwiegend bidentate Komplexe aus. Der 1:3-Komplex im System U-suc ist allerdings gemischt bidentat/monodentat und erreicht deshalb auch einen gegenüber dem 1:3 U-ac Komplex etwas verkürzten Oeq-Abstand von 2,45 Å. Eine weitere wichtige Gruppe von Liganden sind die α- und β-Hydroxycarbonsäuren. Die α-Hydroxycarbonsäuren bilden 1:1-, 1:2-, 2:2- und 3:3-Komplexe aus. Der Ligand koordiniert dabei als 5-Ring-Chelat an Uran(VI). Die Bildung polynuklearer Spezies wird belegt mit einem stufenweisen und sehr starken Ansteigen der Absorption im UV/VIS-Bereich, der durch eine Deformation der linearen O=U=O-Bindung hervorgerufen wird. Außerdem zeigt die EXAFS-Spektroskopie, dass bei pH ~ 2–4 eine U-U-Wechselwirkung bei r(U-U) ~ 3,92 Å auftritt, wodurch die Bildung eines µ2-O verbrückten Dimers nachgewiesen ist. Im nahneutralen pH-Bereich (pH 6–7) ist eine sehr starke U-U-Wechselwirkung bei r(U-U) ~ 3,83 Å er-kennbar. Diese kann durch Ausbildung einer µ3-O verbrückten dreikernigen Struktur erklärt werden. Zwischen den α-Hydroxymonocarbonsäuren und den α-Hydroxydi- und -tricarbon-säuren, die als substituierte Äpfelsäure aufgefasst werden können, besteht der wesentliche Unterschied, dass die Homologen der Äpfelsäure das Dimer im oben genannten pH-Bereich als dominierende Spezies aufweisen, während es bei den Monocarbonsäuren erst bei höheren pH-Werten (pH ~ 4–5) und lediglich zu ~50 % (lac) auftritt. Die β-Hydroxycarbonsäuren bilden hingegen bidentat koordinierende 1:1-, 1:2- und 1:3-Komplexe. Die 1:3-Komplexe sind isostrukturell zum 1:3-U-ac-Komplex. Die Hydroxygruppe in β-Position beteiligt sich folglich nicht an der Komplexierung. Bei der Sorption von Uran(VI) an Hämatit in An- und Abwesenheit organischer Liganden ergibt sich ein breit gefächertes Spektrum an Möglichkeiten. Allgemein lässt sich feststellen, dass die Sorption etwa bei pH 3–4 einsetzt und im nahneutralen pH-Bereich (pH 6–7) maximal wird. Die Anwesenheit organischer Liganden bewirkt im Allgemeinen eine Verschiebung der Sorptionskante zu höheren pH-Werten, wobei folgende Reihenfolge der pH-Werte bei 50 %iger Sorption zu beobachten war: ohne Ligand ~ Protocatechusäure < Essigsäure < Bernsteinsäure < Weinsäure. Weiterhin kann festgestellt werden, dass die Sorptionskomplexe in der Nähe der Sorptionskante monomer sind und in oligomere Urankomplexe im nahneutralen pH-Bereich übergehen. Ohne Zugabe eines Liganden bildet sich mit steigendem pH zuerst ein über Kante verknüpfter, monomerer Sorptionskomplex (ES-Monomer) aus, der sich durch einen Fe-Abstand von ~3,45 Å und einen Oeq-Abstand von ~2,40 Å auszeichnet. Im neutralen pH-Bereich sorbiert Uran als oligomerer (wahrscheinlich dreikerniger) Sorptionskomplex (ES-Trimer) mit r(U-U) = 3,82–3,88 Å und r(U-Oeq) = 2,33–2,37 Å. Im Übergangsbereich kann sich zu geringen Teilen ein einfach oder doppelt über Ecke verknüpfter Sorptionskomplex (SCS- oder DCS-Monomer), wobei das SCS-Monomer einen Fe-Abstand von ~3,70–3,75 Å und einen Oeq-Abstand von ~2,40 Å aufweist, bilden. In Gegenwart von Essigsäure ändern sich lediglich die Strukturparameter minimal. In Gegenwart von Bernstein- und Weinsäure bilden sich im Gegensatz dazu über den Liganden verknüpfte Sorptionskomplexe aus, die also keine U-Fe-Wechselwirkung zeigen und sich besonders durch ihren sehr niedrigen DW(Oeq) von den anderen Sorptionskomplexen unter-scheiden. Im neutralen pH-Bereich liegen wiederum dreikernige Sorptionskomplexe vor, wo-bei es im Falle der Weinsäure auch möglich wäre, dass das aus dem aquatischen System be-kannte Trimer über die Weinsäure an die Oberfläche bindet. Im Unterschied dazu sorbiert Uran(VI) in Gegenwart der Protocatechusäure nahe der Sorptionskante als Gemisch eines monomeren ES- und DCS-Komplexes. Bei weiterer Erhöhung des pH dominiert der DCS-Komplex, der eine starke U-Fe-Wechselwirkung bei r(U-Fe) = 4,19 Å zeigt. Eine Oligomerisierung bleibt in diesem Falle aus. Die im Rahmen dieser Arbeit gewonnenen Ergebnisse tragen zu einem besseren Verständnis der Wechselwirkung von Uran(VI) mit organischen Säuren, sowie von Uran(VI) mit Hämatit in Gegenwart organischer Säuren, bei und liefern die Strukturen für die gebildeten wässrigen Komplexe und die Sorptionskomplexe. Damit unterstützen sie den Aufklärungsprozess des Transports radioaktiver Stoffe und können somit zuverlässigere Risikobewertungen für Endlager nuklearer Abfälle und für Rückstände des Uranerzbergbaus ermöglichen. / This study is focussed on throwing light on the structures of uranium(VI) complexes with aliphatic (hydroxy-) carboxylic acids and on the structures of the sorption complexes on the iron mineral hematite in presence and absence of organic acids. The ternary system of hematite, uranium(VI), and organic ligand is very complicated, thus it is necessary to decompose it in binary systems. The results within these binary systems are used to better understand the complicated ternary system. Based on the comprehensive investigations on the aqueous uranium(VI) complexes, it is now possible to draw inferences from the structure of the carboxylic acid about the structure of the formed uranium(VI) complex in dependence of the pH. At first it has to be mentioned that uranium(VI) commonly gives pentagonal bipyramidal complexes. The pentaaquauranylion is formed by two axial oxygen atoms (Oax) at a distance of 1.76 Å and five equatorial oxygen atoms (Oeq) at 2.40 Å stemming from coordinated water molecules. Due to complexation with organic ligands water is replaced by the ligand, thus the interatomic distances change. Monocarboxylic acids, except for formic acid, form with rising pH 1:1, 1:2, and 1:3 complex-es, successively. 1:4-complexes that were sometimes postulated in literature are probably restricted to very high ligand concentrations (>>1 M) or to non-aqueous solutions. On the basis of the decrease of the spectral splitting Δν of the symmetric and antisymmetric vibration mode of the carboxylic group bidentate coordination is verified. By using EXAFS spectros-copy the structure of the 1:3 complexes with acetic and propionic acid shows an elongation of the U-Oeq distance (r(U-Oeq)) to 2.47 Å and a six fold coordination in the equatorial plane. This distance is characteristic for bidentate coordination of the carboxylic group. In contrast, formic acid gives monodentate complexes. This is proved by an increase of Δν and a shortening of r(U-Oeq). The reason for this behaviour is the missing +I effect from the organic chain that accounts for a dramatically stronger acidity of formic acid. Among the bi- and tricarboxylic acids, the distance between the carboxylic groups is decisive for the prevailing mode of coordination. If the carboxylic groups are only separated by no more than one carbon atom (oxalic and malonic acid) or if the cis-configuration of the carboxylic groups is enforced by a cis-configuration of the ligand (maleic acid), 1:1 and 1:2 complexes with chelating coordination will be formed. This is evidenced by an increase of Δν and a decrease of r(U-Oeq) to 2.36 Å (1:2-complexes). If at least two carbon atoms separate the carboxylic groups from each other (succinic acid), the coordination will be mainly bidentate. However, the 1:3 complex in the U-suc system gives a mixed bidentate/monodentate coordination, thus r(U-Oeq) is only increased to 2.45 Å. Another important group of ligands are the α- and β-Hydroxy acids. α-Hydroxy acids form 1:1, 1:2, 2:2, and 3:3 complexes with rising pH. In all cases the ligand gives 5-membered ring chelates. The formation of polynuclear species is evidenced by a stepwise and very strong increase of the absorption in the UV-Vis range that is caused by a deformation of the linear O=U=O moiety. Moreover, EXAFS spectroscopy shows a uranium-uranium interaction at r(U-U) ~ 3.92 Å in the pH range of 2–4. This distance gives evidence for the formation of a µ2-O bridged dimer. In the near neutral pH range (pH 6–7) a very strong U-U interaction is visible at r(U-U) ~ 3,83 Å. This feature can be explained by the formation of a µ3-O bridged trimeric structure. The main difference between the α-Hydroxy diacids that can be understood as homologues of malic acid and the α-Hydroxy monoacids (glycolic acid, lactic acid, etc.) is the strength of the dimeric complex. Among the homologues of malic acid the complex sta-bility constant of the dimer is so high that the formation of a 1:2 complex is suppressed and the relative concentration of the dimer is at least 90 % in the pH range of 2–4. Among the α-Hydroxy monoacids the occurrence of the dimer is shifted to higher pH values and the relative concentration is limited (e.g. ~50 % in the U-lac system). On the contrary, β-Hydroxy acids form bidentate coordinated 1:1, 1:2, and 1:3 complexes. The 1:3 complexes are isostructural to the 1:3 complex in the U-ac system. Hence, the β-Hydoxy group does not participate in the coordination. For the sorption of uranium(VI) on hematite in absence and presence of organic ligands a widespread array of opportunities exists. In general, sorption starts at pH 3–4 and reaches its maximum in the near neutral pH range (pH 6–7). The presence of organic ligands leads to a shift of the sorption edge to higher pH. The following sequence of the pH where 50 % sorp-tion is reached were found: without ligand ~ protocatechuic acid < acetic acid < succinic acid < tartaric acid. Moreover, it can be stated that the complexes near to the sorption edge are monomeric and merge into oligomeric uranium(VI) complexes in the near neutral pH range. In the absence of organic ligands a monomeric edge-sharing complex (ES monomer) is formed at low pH which is characterized by an U-Fe distance of ~3.45 Å and an Oeq distance of ~2.40 Å. In the near neutral pH range an oligomeric edge-sharing complex (ES trimer) is formed with r(U-U) = 3.82–3.88 Å and r(U-Oeq) = 2.33–2.37 Å. It is possible that in the intermediate pH range a small fraction of single or double corner-sharing (SCS or DCS) complexes occur. The SCS monomer is characterized by r(U-Fe) ~3,70–3,75 Å and r(U-Oeq) ~2,40 Å. The presence of acetic acid has only small effects on the structural parameters. In presence of succinic and tartaric acid and at low pH the sorption complexes are of the type hematite-ligand-uranium, thus no uranium-iron interaction can be found and the DW(Oeq) is very small in contrast to all the other investigated sorption complexes. In the neutral pH range trimeric sorption complexes are formed again. In case of tartaric acid it is conceivable that the trimeric complex known from the aqueous U-tar system is sorbed to the hematite surface. In contrast, the presence of protocatechuic acid results in the formation of a mixture of ES and DCS monomeric complexes at low pH. With ongoing increase of pH the fraction of the DCS monomer rises. This DCS complex shows a strong uranium-iron interaction at r(U-Fe) = 4,19 Å. A formation of oligomeric complexes at neutral pH does not appear. The results gained during all these investigations can help to better understand the interaction of uranium(VI) and carboxylic acids, and beyond that the sorption of uranium(VI) on hematite in the presence of carboxylic acids. Structures of the aqueous and sorption complexes are proposed. All these findings support the ongoing research on the transport behaviour of radioactive matter and may lead to more reliable risk assessment in connection with the permanent disposal of nuclear waste and the residues of uranium mining.
7

NMR structural studies on the periplasmic domain of CitA and DcuS. / Strukturuntersuchungen an der periplasmatischen Domäne von CitA und DcuS mit NMR-Spektroskopie

Vijayan, Vinesh 03 May 2007 (has links)
No description available.
8

Atomare Struktur und elektrischer Widerstand amorpher Na-Sn-Legierungen

Madel, Oliver 19 January 1999 (has links)
Im Rahmen dieser Arbeit werden Untersuchungen der atomaren Struktur und des elektrischen Widerstands an in-situ hergestellten amorphen Na-Sn-Legierungen im Temperaturbereich 2K < T < 500K vorgestellt. Zur Herstellung der hochreaktiven duennen Schichten wird eine neu entwickelte Praeparationsmethode unter Reinstgasatmosphaere und Ultrahochvakuum benutzt. Die Messungen muessen im UHV durchgefuehrt werden. In amorphem Na-Sn gibt es zwei im Sinne von Hume-Rothery bzw. Peierls elektronisch stabilisierte Bereiche, die jeweils einer Phase zugeordnet werden koennen. In Phase I (0 <= x <= 50) koennen sich die Atome nur durch eine Erhoehung der Atomzahldichte, was einer Volumenverkleinerung entspricht, in die Friedelminima des Paarpotentials legen. Dazu gibt das Na sein aeusseres Elektron ab und verkleinert damit seinen Radius. Der zweite Peak im Strukturfaktor S(K) verschiebt hier parallel zum Durchmesser der Fermikugel und ist damit der elektronisch induzierte. Der Peak liegt sehr nahe beim Fermikugeldurchmesser. Dadurch ergeben sich starke Anomalien im elektronischen Transport, im mittleren Konzentrationsbereich macht das System sogar einen Metall-Isolator-Uebergang. In Phase II (60 <= x <= 73) liegen die Atome ohne Aenderung des Volumens in den Friedelminima. In der vorliegenden Arbeit wird davon ausgegangen, dass das Na eine Umgebung aufbaut bzw. findet, die der des reinen Na nahekommt. In Phase II ist der erste Peak in S(K) der elektronisch induzierte. Das System verhaelt sich hier aehnlich wie vergleichbare Edelmetall- Polyvalentelement-Legierungen, bei einer effektiven Valenz Z = 1.8e/a fallen der Peak und der Fermikugeldurchmesser exakt zusammen. In dieser Phase tritt aber in S(K) ein Prepeak bei kleinen Streuvektoren auf. In der elektronischen Zustandsdichte ergibt sich ein Pseudogap bei der Fermienergie und das Material wird ein schlechtes Metall. Im Ueberlappungsbereich (50 < x < 60) koexistieren beide Phasen nebeneinander. Dies wird durch ein in zwei Abstaende aufgespaltenes erstes Maximum in der Atomverteilungsfunktion deutlich. Die Atome besetzen durch ihre Umverteilung von der einen zur anderen Phase scheinbar auch die Positionen zwischen den Friedelminima.
9

Untersuchungen zur Struktur von wassergelösten und an Hämatit sorbierten Uran(VI)-Komplexen mit aliphatischen (Hydroxy-) Carbonsäuren: Kombination verschiedener spektroskopischer Methoden mit Faktorenanalyse und quantenchemischen Berechnungen

Lucks, Christian 23 April 2013 (has links)
Im Mittelpunkt der in dieser Arbeit durchgeführten Untersuchungen steht die Aufklärung der Strukturen der Komplexe von Uran mit aliphatischen (Hydroxy-)Carbonsäuren als Liganden sowie die Strukturen, die bei Sorption von Uran an dem Eisenmineral Hämatit in An- und Abwesenheit organischer Säuren gebildet werden. Das ternäre System aus Hämatit, Uran(VI) und organischem Ligand ist sehr komplex. Daher ist es notwendig eine Aufspaltung in einfachere binäre Systeme vorzunehmen und die Ergebnisse dieser Teilsysteme heranzuziehen, um das komplexere ternäre System zu verstehen. Anhand der umfangreichen durchgeführten Arbeiten zu den wässrigen Uran(VI)-Komplexen können nun Rückschlüsse von der Struktur einer Carbonsäure auf die Struktur der gebildeten Uran(VI)-Komplexe in Abhängigkeit vom pH getroffen werden. Zuerst sollte festgehalten werden, dass Uran(VI) üblicherweise pentagonal-bipyramidale Komplexe ergibt. Das Pentaaquauranylion zeigt beispielsweise zwei axiale Sauerstoffatome (Oax) bei einem Abstand von 1,76 Å und fünf äquatoriale Sauerstoffatome (Oeq) bei einem Abstand von 2,40 Å, die von koordinierten Wassermolekülen stammen. Im Zuge der Komplexierung mit organischen Liganden werden die Wassermoleküle durch organische Liganden ersetzt, was zu messbaren Veränderungen der Bindungsabstände führt. Monocarbonsäuren bilden mit Ausnahme der Ameisensäure nacheinander mit steigendem pH 1:1-, 1:2- und 1:3-Komplexe. Die teilweise in der Literatur postulierten 1:4-Komplexe beschränken sich wahrscheinlich auf extrem hohe Ligandkonzentration (>>1 M) oder nicht-wässrige Lösungen (z. B. 1:4-U-ac-Komplex [Ryan 1967]). Anhand der Verringerung der spektralen Aufspaltung Δν der symmetrischen und antisymmetrischen Valenzschwingung der Carboxygruppe konnte für diese Komplexe eine bidentate Koordination nachgewiesen werden. Mittels EXAFS konnte die bidentate Struktur anhand einer Verlängerung des Oeq-Abstandes auf 2,47 Å im Falle der 1:3-Komplexe in den Systemen U-ac und U-prop bestätigt werden. Die Ameisensäure hingegen bildet monodentate Komplexe. Dies konnte durch eine Erhöhung von Δν und eine Verkürzung des Oeq-Abstandes gezeigt werden. Ursache für dieses Verhalten ist der fehlende +I-Effekt durch den organischen Rest, der unter anderem eine deutliche Erhöhung der Säurestärke im Falle der Ameisensäure nach sich zieht. Bei Bi- und Tricarbonsäuren bestimmt der Abstand der Carboxygruppen zueinander, welche Art der Koordinierung auftritt. Werden die Carboxygruppen durch maximal ein Kohlenstoffatom voneinander getrennt (Oxal- und Malonsäure) oder wird durch eine cis-Doppelbindung eine cis-Konfiguration der Carboxygruppen zueinander erzwungen (Maleinsäure), treten 1:1- und 1:2 , sowie für Oxalsäure auch 1:3-Komplexe mit chelatartiger Koordinierung auf. Dies wird durch eine Erhöhung von Δν und eine Verringerung von r(U-Oeq) auf 2,36 Å (1:2-Komplexe) untermauert. Liegen mindestens zwei Kohlenstoffatome zwischen den Carboxygruppen (Bernsteinsäure, Tricarballylsäure), so bilden sich überwiegend bidentate Komplexe aus. Der 1:3-Komplex im System U-suc ist allerdings gemischt bidentat/monodentat und erreicht deshalb auch einen gegenüber dem 1:3 U-ac Komplex etwas verkürzten Oeq-Abstand von 2,45 Å. Eine weitere wichtige Gruppe von Liganden sind die α- und β-Hydroxycarbonsäuren. Die α-Hydroxycarbonsäuren bilden 1:1-, 1:2-, 2:2- und 3:3-Komplexe aus. Der Ligand koordiniert dabei als 5-Ring-Chelat an Uran(VI). Die Bildung polynuklearer Spezies wird belegt mit einem stufenweisen und sehr starken Ansteigen der Absorption im UV/VIS-Bereich, der durch eine Deformation der linearen O=U=O-Bindung hervorgerufen wird. Außerdem zeigt die EXAFS-Spektroskopie, dass bei pH ~ 2–4 eine U-U-Wechselwirkung bei r(U-U) ~ 3,92 Å auftritt, wodurch die Bildung eines µ2-O verbrückten Dimers nachgewiesen ist. Im nahneutralen pH-Bereich (pH 6–7) ist eine sehr starke U-U-Wechselwirkung bei r(U-U) ~ 3,83 Å er-kennbar. Diese kann durch Ausbildung einer µ3-O verbrückten dreikernigen Struktur erklärt werden. Zwischen den α-Hydroxymonocarbonsäuren und den α-Hydroxydi- und -tricarbon-säuren, die als substituierte Äpfelsäure aufgefasst werden können, besteht der wesentliche Unterschied, dass die Homologen der Äpfelsäure das Dimer im oben genannten pH-Bereich als dominierende Spezies aufweisen, während es bei den Monocarbonsäuren erst bei höheren pH-Werten (pH ~ 4–5) und lediglich zu ~50 % (lac) auftritt. Die β-Hydroxycarbonsäuren bilden hingegen bidentat koordinierende 1:1-, 1:2- und 1:3-Komplexe. Die 1:3-Komplexe sind isostrukturell zum 1:3-U-ac-Komplex. Die Hydroxygruppe in β-Position beteiligt sich folglich nicht an der Komplexierung. Bei der Sorption von Uran(VI) an Hämatit in An- und Abwesenheit organischer Liganden ergibt sich ein breit gefächertes Spektrum an Möglichkeiten. Allgemein lässt sich feststellen, dass die Sorption etwa bei pH 3–4 einsetzt und im nahneutralen pH-Bereich (pH 6–7) maximal wird. Die Anwesenheit organischer Liganden bewirkt im Allgemeinen eine Verschiebung der Sorptionskante zu höheren pH-Werten, wobei folgende Reihenfolge der pH-Werte bei 50 %iger Sorption zu beobachten war: ohne Ligand ~ Protocatechusäure < Essigsäure < Bernsteinsäure < Weinsäure. Weiterhin kann festgestellt werden, dass die Sorptionskomplexe in der Nähe der Sorptionskante monomer sind und in oligomere Urankomplexe im nahneutralen pH-Bereich übergehen. Ohne Zugabe eines Liganden bildet sich mit steigendem pH zuerst ein über Kante verknüpfter, monomerer Sorptionskomplex (ES-Monomer) aus, der sich durch einen Fe-Abstand von ~3,45 Å und einen Oeq-Abstand von ~2,40 Å auszeichnet. Im neutralen pH-Bereich sorbiert Uran als oligomerer (wahrscheinlich dreikerniger) Sorptionskomplex (ES-Trimer) mit r(U-U) = 3,82–3,88 Å und r(U-Oeq) = 2,33–2,37 Å. Im Übergangsbereich kann sich zu geringen Teilen ein einfach oder doppelt über Ecke verknüpfter Sorptionskomplex (SCS- oder DCS-Monomer), wobei das SCS-Monomer einen Fe-Abstand von ~3,70–3,75 Å und einen Oeq-Abstand von ~2,40 Å aufweist, bilden. In Gegenwart von Essigsäure ändern sich lediglich die Strukturparameter minimal. In Gegenwart von Bernstein- und Weinsäure bilden sich im Gegensatz dazu über den Liganden verknüpfte Sorptionskomplexe aus, die also keine U-Fe-Wechselwirkung zeigen und sich besonders durch ihren sehr niedrigen DW(Oeq) von den anderen Sorptionskomplexen unter-scheiden. Im neutralen pH-Bereich liegen wiederum dreikernige Sorptionskomplexe vor, wo-bei es im Falle der Weinsäure auch möglich wäre, dass das aus dem aquatischen System be-kannte Trimer über die Weinsäure an die Oberfläche bindet. Im Unterschied dazu sorbiert Uran(VI) in Gegenwart der Protocatechusäure nahe der Sorptionskante als Gemisch eines monomeren ES- und DCS-Komplexes. Bei weiterer Erhöhung des pH dominiert der DCS-Komplex, der eine starke U-Fe-Wechselwirkung bei r(U-Fe) = 4,19 Å zeigt. Eine Oligomerisierung bleibt in diesem Falle aus. Die im Rahmen dieser Arbeit gewonnenen Ergebnisse tragen zu einem besseren Verständnis der Wechselwirkung von Uran(VI) mit organischen Säuren, sowie von Uran(VI) mit Hämatit in Gegenwart organischer Säuren, bei und liefern die Strukturen für die gebildeten wässrigen Komplexe und die Sorptionskomplexe. Damit unterstützen sie den Aufklärungsprozess des Transports radioaktiver Stoffe und können somit zuverlässigere Risikobewertungen für Endlager nuklearer Abfälle und für Rückstände des Uranerzbergbaus ermöglichen. / This study is focussed on throwing light on the structures of uranium(VI) complexes with aliphatic (hydroxy-) carboxylic acids and on the structures of the sorption complexes on the iron mineral hematite in presence and absence of organic acids. The ternary system of hematite, uranium(VI), and organic ligand is very complicated, thus it is necessary to decompose it in binary systems. The results within these binary systems are used to better understand the complicated ternary system. Based on the comprehensive investigations on the aqueous uranium(VI) complexes, it is now possible to draw inferences from the structure of the carboxylic acid about the structure of the formed uranium(VI) complex in dependence of the pH. At first it has to be mentioned that uranium(VI) commonly gives pentagonal bipyramidal complexes. The pentaaquauranylion is formed by two axial oxygen atoms (Oax) at a distance of 1.76 Å and five equatorial oxygen atoms (Oeq) at 2.40 Å stemming from coordinated water molecules. Due to complexation with organic ligands water is replaced by the ligand, thus the interatomic distances change. Monocarboxylic acids, except for formic acid, form with rising pH 1:1, 1:2, and 1:3 complex-es, successively. 1:4-complexes that were sometimes postulated in literature are probably restricted to very high ligand concentrations (>>1 M) or to non-aqueous solutions. On the basis of the decrease of the spectral splitting Δν of the symmetric and antisymmetric vibration mode of the carboxylic group bidentate coordination is verified. By using EXAFS spectros-copy the structure of the 1:3 complexes with acetic and propionic acid shows an elongation of the U-Oeq distance (r(U-Oeq)) to 2.47 Å and a six fold coordination in the equatorial plane. This distance is characteristic for bidentate coordination of the carboxylic group. In contrast, formic acid gives monodentate complexes. This is proved by an increase of Δν and a shortening of r(U-Oeq). The reason for this behaviour is the missing +I effect from the organic chain that accounts for a dramatically stronger acidity of formic acid. Among the bi- and tricarboxylic acids, the distance between the carboxylic groups is decisive for the prevailing mode of coordination. If the carboxylic groups are only separated by no more than one carbon atom (oxalic and malonic acid) or if the cis-configuration of the carboxylic groups is enforced by a cis-configuration of the ligand (maleic acid), 1:1 and 1:2 complexes with chelating coordination will be formed. This is evidenced by an increase of Δν and a decrease of r(U-Oeq) to 2.36 Å (1:2-complexes). If at least two carbon atoms separate the carboxylic groups from each other (succinic acid), the coordination will be mainly bidentate. However, the 1:3 complex in the U-suc system gives a mixed bidentate/monodentate coordination, thus r(U-Oeq) is only increased to 2.45 Å. Another important group of ligands are the α- and β-Hydroxy acids. α-Hydroxy acids form 1:1, 1:2, 2:2, and 3:3 complexes with rising pH. In all cases the ligand gives 5-membered ring chelates. The formation of polynuclear species is evidenced by a stepwise and very strong increase of the absorption in the UV-Vis range that is caused by a deformation of the linear O=U=O moiety. Moreover, EXAFS spectroscopy shows a uranium-uranium interaction at r(U-U) ~ 3.92 Å in the pH range of 2–4. This distance gives evidence for the formation of a µ2-O bridged dimer. In the near neutral pH range (pH 6–7) a very strong U-U interaction is visible at r(U-U) ~ 3,83 Å. This feature can be explained by the formation of a µ3-O bridged trimeric structure. The main difference between the α-Hydroxy diacids that can be understood as homologues of malic acid and the α-Hydroxy monoacids (glycolic acid, lactic acid, etc.) is the strength of the dimeric complex. Among the homologues of malic acid the complex sta-bility constant of the dimer is so high that the formation of a 1:2 complex is suppressed and the relative concentration of the dimer is at least 90 % in the pH range of 2–4. Among the α-Hydroxy monoacids the occurrence of the dimer is shifted to higher pH values and the relative concentration is limited (e.g. ~50 % in the U-lac system). On the contrary, β-Hydroxy acids form bidentate coordinated 1:1, 1:2, and 1:3 complexes. The 1:3 complexes are isostructural to the 1:3 complex in the U-ac system. Hence, the β-Hydoxy group does not participate in the coordination. For the sorption of uranium(VI) on hematite in absence and presence of organic ligands a widespread array of opportunities exists. In general, sorption starts at pH 3–4 and reaches its maximum in the near neutral pH range (pH 6–7). The presence of organic ligands leads to a shift of the sorption edge to higher pH. The following sequence of the pH where 50 % sorp-tion is reached were found: without ligand ~ protocatechuic acid < acetic acid < succinic acid < tartaric acid. Moreover, it can be stated that the complexes near to the sorption edge are monomeric and merge into oligomeric uranium(VI) complexes in the near neutral pH range. In the absence of organic ligands a monomeric edge-sharing complex (ES monomer) is formed at low pH which is characterized by an U-Fe distance of ~3.45 Å and an Oeq distance of ~2.40 Å. In the near neutral pH range an oligomeric edge-sharing complex (ES trimer) is formed with r(U-U) = 3.82–3.88 Å and r(U-Oeq) = 2.33–2.37 Å. It is possible that in the intermediate pH range a small fraction of single or double corner-sharing (SCS or DCS) complexes occur. The SCS monomer is characterized by r(U-Fe) ~3,70–3,75 Å and r(U-Oeq) ~2,40 Å. The presence of acetic acid has only small effects on the structural parameters. In presence of succinic and tartaric acid and at low pH the sorption complexes are of the type hematite-ligand-uranium, thus no uranium-iron interaction can be found and the DW(Oeq) is very small in contrast to all the other investigated sorption complexes. In the neutral pH range trimeric sorption complexes are formed again. In case of tartaric acid it is conceivable that the trimeric complex known from the aqueous U-tar system is sorbed to the hematite surface. In contrast, the presence of protocatechuic acid results in the formation of a mixture of ES and DCS monomeric complexes at low pH. With ongoing increase of pH the fraction of the DCS monomer rises. This DCS complex shows a strong uranium-iron interaction at r(U-Fe) = 4,19 Å. A formation of oligomeric complexes at neutral pH does not appear. The results gained during all these investigations can help to better understand the interaction of uranium(VI) and carboxylic acids, and beyond that the sorption of uranium(VI) on hematite in the presence of carboxylic acids. Structures of the aqueous and sorption complexes are proposed. All these findings support the ongoing research on the transport behaviour of radioactive matter and may lead to more reliable risk assessment in connection with the permanent disposal of nuclear waste and the residues of uranium mining.

Page generated in 0.1023 seconds