• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Princípio dos grandes desvios para estados de Gibbs-equilíbrio sobre shifts enumeráveis à temperatura zero / Large deviation principle for Gibbs-equilibrium states on contable shifts at zero temperature.

Perez Reyes, Edgardo Enrique 13 March 2015 (has links)
Seja $\\Sigma_(\\mathbb)$ um shift enumerável topologicamente mixing com a propriedade BIP sobre o alfabeto $\\mathbb$, $f: \\Sigma_(\\mathbb) ightarrow \\mathbb$ um potencial com variação somável e pressão topológica finita. Sob hipóteses adequadas provamos a existência de um princípio dos grandes desvios para a familia de estados de Gibbs $(\\mu_{\\beta})_{\\beta > 0}$, onde cada $\\mu_{\\beta}$ é a medida de Gibbs associada ao potencial $\\beta f$. Para fazer isso generalizamos alguns teoremas de Otimização Ergódica para shifts de Markov enumeráveis. Esse resultado generaliza o mesmo princípio no caso de um subshift topologicamente mixing sobre um alfabeto finito, previamente provado por A. Baraviera, A. Lopes e P. Thieullen. / Let $\\Sigma_(\\mathbb)$ be a topologically mixing countable Markov shift with the BIP property over the alphabet $\\mathbb$ and a potential $f: \\Sigma_(\\mathbb) ightarrow \\mathbb$ with summable variation and finite pressure. Under suitable hypotheses, we prove the existence of a large deviation principle for the family of Gibbs states $(\\mu_{\\beta})_{\\beta > 0}$ where each $\\mu_{\\beta}$ is the Gibbs measure associated to the potential $\\beta f$. For do this we generalize some theorems from finite to countable Markov shifts in Ergodic Optimization. This result generalizes the same principle in the case of topologically mixing subshifts over a finite alphabet previously proved by A. Baraviera, A. Lopes and P. Thieullen.
2

Princípio dos grandes desvios para estados de Gibbs-equilíbrio sobre shifts enumeráveis à temperatura zero / Large deviation principle for Gibbs-equilibrium states on contable shifts at zero temperature.

Edgardo Enrique Perez Reyes 13 March 2015 (has links)
Seja $\\Sigma_(\\mathbb)$ um shift enumerável topologicamente mixing com a propriedade BIP sobre o alfabeto $\\mathbb$, $f: \\Sigma_(\\mathbb) ightarrow \\mathbb$ um potencial com variação somável e pressão topológica finita. Sob hipóteses adequadas provamos a existência de um princípio dos grandes desvios para a familia de estados de Gibbs $(\\mu_{\\beta})_{\\beta > 0}$, onde cada $\\mu_{\\beta}$ é a medida de Gibbs associada ao potencial $\\beta f$. Para fazer isso generalizamos alguns teoremas de Otimização Ergódica para shifts de Markov enumeráveis. Esse resultado generaliza o mesmo princípio no caso de um subshift topologicamente mixing sobre um alfabeto finito, previamente provado por A. Baraviera, A. Lopes e P. Thieullen. / Let $\\Sigma_(\\mathbb)$ be a topologically mixing countable Markov shift with the BIP property over the alphabet $\\mathbb$ and a potential $f: \\Sigma_(\\mathbb) ightarrow \\mathbb$ with summable variation and finite pressure. Under suitable hypotheses, we prove the existence of a large deviation principle for the family of Gibbs states $(\\mu_{\\beta})_{\\beta > 0}$ where each $\\mu_{\\beta}$ is the Gibbs measure associated to the potential $\\beta f$. For do this we generalize some theorems from finite to countable Markov shifts in Ergodic Optimization. This result generalizes the same principle in the case of topologically mixing subshifts over a finite alphabet previously proved by A. Baraviera, A. Lopes and P. Thieullen.

Page generated in 0.0527 seconds