• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 8
  • 6
  • 3
  • 1
  • Tagged with
  • 70
  • 70
  • 13
  • 12
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Earthquake Frequency-Magnitude Distribution and Interface Locking at the Middle America Subduction Zone near Nicoya Peninsula, Costa Rica

Ghosh, Abhijit 21 June 2007 (has links)
Subduction zone megathrusts produce the majority of the world's largest earthquakes. To understand the processes that control seismicity here, it is important to improve our knowledge on the subduction interface characteristics and its spatial variations. Nicoya Peninsula, Costa Rica, extends the continental landmass ~50 km towards the trench, making it a very suitable place to study interface activity from right on the top of the seismogenic zone of the Middle America Subduction Zone (MASZ). We contribute to and utilize an earthquake catalog of 8765 analyst-picked events to determine the spatial variability in the earthquake frequency-magnitude distribution (FMD) in this region. After initial detection, magnitude determination and location, the events are precisely relocated using a locally derived 3-D seismic compressional and shear wave velocity model (DeShon et al., 2006). After restricting the dataset to events nearest the interface and with low formal error (horizontal location error < 5 km), we retain a subset of 3226 events that best resolves interface activity. Beneath Nicoya, we determine the spatial variability and mean FMD of the interface, and focus on the relative relationship of small-to-large earthquakes, termed b-value. Across the region, the overall b-value (1.18 ± 0.04) is higher than the global average (b~1), and much larger than the global subduction zone average (b~0.6). Significant variation in b-value is observed along the active plate interface. A well resolved zone of lower b is observed at and offshore central Nicoya coast, in a previously determined locked patch using deformation observed from Global Positioning System (GPS). Conversely, high b-values prevail over the subducted portion of the Fisher ridge, which likely ruptured in the 1990 Gulf of Nicoya Mw 7.0 earthquake. Observed regions of low b-value approximately corresponds to more strongly-locked segments of the subduction interface resulting in higher differential stress, which may be released in the next large interface earthquake in this part of the MASZ. Across the region the b-value is found to vary inversely with the degree of interface locking. Thus, it is proposed that if sufficient data exist, spatial b-value mapping can be used as a proxy to determine interface locking. This method is especially useful along the subduction megathrust, which is generally offshore making geodetic measurements difficult.
22

Heat flow variability at the Costa Rica subduction zone as modeled by bottom-simulating reflector depths imaged in the CRISP 3D seismic survey

Cavanaugh, Shannon Lynn 09 November 2012 (has links)
3D seismic reflection data were acquired by the R/V Langseth and used to extract heat flow information using bottom-simulating reflector (BSR) depths across the southern Costa Rica convergent margin. These data are part of the CRISP Project, which will seismically image the Middle America subduction zone in 3D. The survey was conducted in an area approximately 55x11 km, northwest of the Osa Peninsula, Costa Rica. For the analysis presented here, seismic data were processed using a post-stack time migration. The BSR—a reverse polarity seismic reflection indicating the base of the gas hydrate phase boundary—is imaged clearly within the slope-cover sediments of the margin wedge. If pressure is taken into account, in deep water environments the BSR acts as a temperature gauge revealing subsurface temperatures across the margin. Two heat flow models were used in this analysis. In the Hornbach model BSR depth is predicted using a true 3D diffusive heat flow model combined with Integrated Ocean Drilling Program (IODP) thermal conductivity data and results are compared with actual BSR depth observations to constrain where heat flow anomalies exist. In the second model heat flow values are estimated using the heat flow equation. Uniform heat flow in the region should result in a deeper BSR downslope toward the trench due to higher pressure; however results indicate the BSR is deepest at over 325 meters below the seafloor (mbsf) further landward and shoals near the trench to less than 100 mbsf, suggesting elevated heat flow towards the toe of the accretionary prism. Heat flow values also reflect this relation. In addition to this survey-wide trend, local heat flow anomalies appear in the form of both circular patterns and linear trends extending across the survey, which can be related to mounds, thrust faults, folds, double BSRs, and seafloor erosion imaged in the seismic data. I suggest that these areas of higher local heat flow represent sites where advection of heat from deep, upward-migrating, thermogenically-sourced fluids and/or gases may be taking place. These heat flow trends have implications for not only earthquake nucleation, but also methane hydrate reserve stability. / text
23

Geophysical investigations in the Nankai Trough and Sumatran subduction zones

Martin, Kylara Margaret 08 July 2013 (has links)
The 2004 Sumatra-Andaman and the 2011 Tohoku-Oki earthquakes demonstrate the importance of understanding subduction zone earthquakes and the faults that produce them. Faults that produce earthquakes and/or tsunamis in these systems include plate boundary megathrusts, splay faults (out of sequence thrusts), and strike-slip faults from strain partitioning. Offshore Japan, IODP Exp. 314 collected logging while drilling (LWD) data across several seismically-imaged fault splays in the Nankai Trough accretionary prism. I combine LWD resistivity data with a model of fluid invasion to compare the permeabilities of sands. My results indicate that sands within faulted zones are 2-3 orders of magnitude more permeable than similar undisturbed sands. Therefore fault zones are likely to be fluid conduits within the accretionary wedge. Fluids can affect the physical and chemical properties of the faulted material, increasing pore pressures and effectively lubricating the faults. Fluids play an important role in fault slip, but hazard analysis also requires an understanding of fault geometry and slip direction. Both Japan and Sumatra exhibit strain partitioning, where oblique convergence between tectonic plates is partitioned between the megathrust and strike-slip faults proximal to the arc. Offshore Sumatra, I combine profiles from a 2D seismic survey (SUMUT) with previous bathymetry and active seismic surveys to characterize the West Andaman Fault adjacent to the Aceh forearc Basin. Along this fault I interpret transpressional flower structures that cut older thrust faults. These flower structures indicate that the modern West Andaman Fault is a right lateral strike-slip fault and thus helps to accommodate the translational component of strain in this highly oblique subduction zone. Offshore the Kii Peninsula, Japan, I analyze a trench-parallel depression that forms a notch in the seafloor just landward of the megasplay fault system, along the seaward edge of the forearc Kumano Basin. Using a 12 km wide, 3D seismic volume, I observe vertical faults and faults which dip toward the central axis of the depression, forming apparent flower structures. The along-strike geometry of the vertical faults makes predominantly normal or thrust motion unlikely. I conclude, therefore, that this linear depression is the bathymetric expression of a transtensional fault system. While the obliquity of convergence in the Nankai Trough is small (~15 degrees), this Kumano Basin Edge Fault Zone could be due to partitioning of the plate convergent strain. The location of the West Andaman Fault and KBEFZ within the forearc may be controlled by the rheology contrast between active accretionary wedges and the more stable crust beneath forearc basins. / text
24

Magnetotelluric constraints on the role of fluids in convergent plate boundaries

Rippe, Dennis Unknown Date
No description available.
25

High-Resolution Imaging of the Mantle Transition Zone beneath Japan from Sparse Receiver Functions

Escalante, Christian Unknown Date
No description available.
26

Onshore/offshore structure of the Northern Cascadia subduction zone from Bayesian receiver function inversion

Brillon, Camille 01 May 2012 (has links)
This study applies Bayesian inversion to receiver functions (RF) to estimate local shear wave velocity (Vs) structure of the crust and upper mantle beneath two ocean bottom seismometers (OBS) offshore, and two land-based seismometers onshore Vancouver Island, British Columbia, Canada. We use passive seismic data recorded on NC89, a permanent NEPTUNE (North-east Pacific Time-series Undersea Networked Experiments) OBS located on the continental slope, and on a temporary autonomous KECK foundation OBS, KEBB, located at the Endeavour segment of the Juan de Fuca Ridge (JdFR). The two land based seismometers (OZB and PGC) are located on Vancouver Island and are part of the Canadian National Seismograph Network (CNSN). The introduction of NEPTUNE has helped to fill a gap in offshore seismic monitoring, however; due to high noise levels and a relatively short deployment time, few useful events have been recorded (to date) for RF analysis. In this study, we utilize three-component, broadband recordings of large (M6+), distant (30 -100 degrees) earthquakes to compute RFs due to locally generated P (compressional) to S (shear) converted waves. RFs are then inverted using a non-linear Bayesian approach which yields optimal profiles of Vs, Vp (compressional wave velocity), and strike and dip angles, as well as rigorous uncertainty estimates for these parameters. Near the JdFR a thin sediment layer (<1 km) is resolved overlying a 2 km thick oceanic crust. The crust contains a large velocity contrast at the depth of an expected axial magma chamber. The oceanic crust thickens to 10 km at the continental slope where it is overlain by 5 km of sediments. At the coastal station (OZB) a low velocity zone is imaged at 16 km depth dipping approximately 12 degrees NE. Evidence for this low velocity zone is also seen beneath southern Vancouver Island (PGC) at a depth consistent with previous studies. Determining such models at a number of locations (from the spreading ridge to the coast) provides new information regarding local structure and can aid in seismic hazard analysis. / Graduate
27

A Disaster risk management approach to seismic risk on Vancouver Island, British Columbia

Seemann, Mark R. 02 January 2013 (has links)
Communities on Vancouver Island, British Columbia face significant exposure to damaging earthquakes. This seismic risk arises not only from the Island’s proximity to crustal, sub-crustal and subduction earthquake sources in the Cascadia Subduction Zone and from their associated aftershock sequences, but also from environmental (natural and human-made) and social vulnerabilities in Vancouver Island communities and their current capacities to respond and recover from a large seismic event. Seeking to 1) assist community officials and the general public to better understand the scope of the earthquake risk on Vancouver Island; 2) raise awareness of the gaps in Vancouver Island’s risk assessment; 3) encourage and facilitate comprehensive seismic risk discussions at all levels of governance; and 4) offer quantitative data on which to base sound funding and policy decisions, this dissertation offers three new studies, presented in paper format, toward the comprehensive management of seismic risk on Vancouver Island. The first paper, reviews the components of risk and, building on international risk management standards and best practices, develops a new, comprehensive Disaster Risk Management (DRM) Framework for practitioners. This DRM Framework is then used to review existing knowledge of Vancouver Island’s seismic risk. A number of information gaps are identified, and two in particular, mainshock and aftershock hazard assessment, are targeted for further analysis. / Graduate
28

The boundary of the subducting slab and mantle wedge of an incipient arc: P-T-D history, mixing, and fluid-related processes recorded in the Dalrymple Amphibolite, Palawan Ophiolite (the Philippines) / 初期島弧の沈み込むスラブーマントルウェッジ境界:フィリピン・パラワンオフィオライト中のダーリンプル角閃岩に記録された温度・圧力・変形履歴、岩石混合および流体の関与プロセスについて

VALERA, Gabriel Theophilus Vinalay 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23713号 / 理博第4803号 / 新制||理||1687(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 河上 哲生, 教授 田上 高広, 教授 下林 典正 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
29

Glissements sismiques et asismiques : le cas du Japon / Seismic and aseismic slip : the Japanese subduction zone

Gardonio, Blandine 02 March 2017 (has links)
L'existence de glissements lents a été observé pour la première fois en Californie, sur une portion de la faille de San Andreas (Steinbrugge et al., 1960,Tocher 1960). Ils ont ensuite été détéctés dans les années 90s avec l'avènement des GPS. Les interactions entre glissement lents, ou glissements asismiques (qui n'émettent pas d'ondes élastiques) et les glissements sismiques est cependant mal connue.Pourtant, cette question est fondamentale puisque des glissements lents ont été observés avant plusieurs séismes.Par exemple, l’installation d’un glissement lent avant le séisme d’Izmit de 1999 en Turquie a été mise en évidence grâce à l’analyse de signaux répétitifs (Bouchon et al., 2011). De même, en étudiant le comportement des séismes répétitifs avant le méga-séisme de Tohoku de 2011, deux séquences de glissement lent en direction du point d’initiation ont été observées (Kato et al., 2012). D’autres glissements lents précédents des séismes de grandes ampleurs ont été reportés, notamment au Mexique, avant le séisme de Papanoa (Radiguet et al., 2016) de magnitude 7.3 et au Chili, avant le séisme d’Iquique de 2014 de magnitude 8.2 (Ruiz et al., 2014).L'objectif de ce travail de thèse est de mieux caractériser les interactions qui existent entre glissements sismiques et asismiques dans une zone de subduction très largement instrumentée: le Japon.La très grande densité des réseaux Japonais (sismique courte et longue période, GPS) autorise des seuils de détection des glissements sismiques ou lents très bas, et permet d'utiliser des méthodes de réseaux afin de maximiser le rapport signal sur bruit. La recherche d'épisodes de déformation lente est basée sur plusieurs types d'observables et de méthodes, et est complétée par l'analyse des changements de taux de sismicité accompagnant ces épisodes. Cette thèse vise ainsi à mieux comprendre comment du glissement lent peut -ou non- accélérer l'occurrence de grands séismes, et les conditions requises pour se faire. / Transient aseismic slip events (that do not emit elastic waves) were first discovered on the San Andreas fault in central California in 1960 (Steinbrugge et al., 1960, Tocher 1960) and were later confirmed by the development and installation of GPS stations. Aseismic slip can occur on continental faults as well as on subduction zones. However, the interactions between aseismic and seismic slips are not fully captured yet. Understanding the mechanisms at stake on fault planes is fundamental since several large earthquakes were preceded by aseismic slip episodes.For example, the setting of a slow slip event before the 1999 Izmit earthquake in Turkey was evidenced by the observation of repeating signals at one station (Bouchon et al., 2011). Also, by studying repeating earthquakes before the 2011 Tohoku earthquake, two slow slip episodes that migrated towards the rupture intitiation were observed (Kato et al., 2012). Other transient slips preceding large earthquakes occurred, including in Mexico, before the M7.3 Papanoa earthquake (Radiguet et al., 2016) and in Chile, before the 2014 Iquique earthquake (Ruiz et al., 2014).The aim of this thesis is to better characterize the interactions between seismic and aseismic slip that can occur in a subduction zone largely instrumented: Japan.The very high density of the japanese monitoring networks(seismic networks, both at short and long periods, and GPS network), allows the detection ofseismic and aseismic slip events with low intensity / size, and is amenable to the use of arraymethods to improve the signal-to-noise ratio. The search for episodes of transient deformation will be based on several observables andtechniques, and is complemented by the analysis of the changes in earthquake rates concomittent to these episodes. This work thus gives new clues on how aseismic deformation can -or not- accelerate the occurrence of strong earthquakes, and on what are the conditions (tectonic, dynamic) for this to happen.
30

Evolução petrogenética e geotectônica do Ofiolito Arroio Grande, SE do Cinturão Dom Feliciano (Brasil)

Ramos, Rodrigo Chaves January 2018 (has links)
O Ofiolito Arroio Grande, localizado no sudeste do Cinturão Dom Feliciano, próximo à fronteira Brasil/Uruguai, entre Arroio Grande e Jaguarão (RS), é uma associação metaultramáfica-máfica-sedimentar que representa fragmentos de uma mélange ofiolítica, relacionada à amalgamação do paleocontinente Gondwana Ocidental durante os estágios finais do ciclo orogênico Brasiliano-Panafricano. As rochas do Ofiolito Arroio Grande se encontram circundadas por rochas metassiliciclásticas do Complexo Arroio Grande, do qual o ofiolito faz parte, e também como xenólitos em meio a granitoides da Suíte Pinheiro Machado e do Granito Três Figueiras (os quais integram o Batólito Pelotas-Aiguá). A unidade metaultramáfica do ofiolito compreende serpentinitos e xistos magnesianos cromíferos. Sua unidade metamáfica é constituída por anfibolitos, metagabros e metadioritos. A unidade metassedimentar compreende mármores calcíticos, intrudidos por enxame de diques máficos. O Ofiolito Arroio Grande está posicionado ao longo da Zona de Cisalhamento Ayrosa Galvão-Arroio Grande (transcorrente, dúctil, alto ângulo), responsável pela milonitização da maioria das rochas dessa associação. As investigações desenvolvidas no ofiolito tiveram o objetivo de identificar as fontes magmáticas dos protólitos e os processos que ocorreram desde sua geração no manto/crosta oceânica até sua incorporação no continente, além de obter idades (absolutas e relativas) referentes a esses processos. Para os metaultramafitos, a geoquímica de rocha total (e.g. Ni >1000 ppm; Cr > 1500 ppm), em conjunto com a química mineral de cromitas (e.g. Cr# 0,6-0,8; TiO2 0,01-0,20 %peso; Fe2+/Fe3+ ± 0,9), sugeriu protólitos harzburgíticos mantélicos, cuja fonte é um manto depletado sob uma região de espalhamento oceânico de retroarco, que experimentou altas taxas de fusão parcial. Esses harzburgitos foram posteriormente serpentinizados em ambiente oceânico, sugerido pelas razões 87Sr/86Sr630 de um serpentinito (ca. 0,707). Para os metamafitos, a geoquímica de rocha total e isotópica sugeriram protólitos toleíticos oceânicos, gerados em um contexto de suprassubducção em ambiente de retroarco (e.g. Cr 260-600 ppm; Nb/Y 0,1-0,5; Ti/Y ± 500; La/Nb 2-5; Th/Yb 0,1-5 e Nb/Yb 1-5; padrões de REE; razões 87Sr/86Sr630 variando de MORB – 0,703 – a IAT – 0,705-0,707), cuja fonte magmática foi enriquecida por material crustal e fluidos relacionados à subducção. A idade mínima para a obducção e metamorfismo das unidades ofiolíticas foi estimada em 640 Ma, a partir da datação (U-Pb SHRIMP) de um quartzo sienito. Esse último é o resultado de fusões relacionadas a intrusões diorítico-tonalíticas, atribuídas ao magmatismo de arco continental da Suíte Pinheiro Machado. Essas intrusões afetaram os mármores e os anfibolitos (fragmentos dos enxames de diques máficos), de maneira que, em pelo menos 640 Ma, rochas da mélange ofiolítica (já metamorfizadas) estavam alojadas em ambiente continental. Um evento metassomático posterior (relacionado à intrusão do Granito Três Figueiras, sincinemática à zona de cisalhamento acima referida) afetou os serpentinitos, gerando zonas de talcificação, tremolitização e cloritização, essa última representando um blackwall que também envolveu unidades metassiliciclásticas do Complexo Arroio Grande. O Ofiolito Arroio Grande foi inserido no contexto geotectônico da bacia de retroarco Marmora, cujos fragmentos são encontrados na Namíbia (Terreno Marmora) e no Uruguai (Complexo Paso del Dragón e Bacia Rocha – Terreno Punta del Este). / The Arroio Grande Ophiolite, located in the southeastern region of the Dom Feliciano Belt, near the Brazil/Uruguay border, is a metaultramafic-mafic-sedimentary association which represents slices of an ophiolitic mélange, related to the Western Gondwana amalgamation during the late stages of the Brasiliano-Panafrican orogenic cycle. The Arroio Grande Ophiolite rocks are enveloped by metasiliciclastic units of the Arroio Grande Complex and occur as xenolyths within granitoids of the Pinheiro Machado Suite and within the Três Figueiras Granite (units of the Pelotas-Aiguá Batholith). The metaultramafites of the ophiolite comprise serpentinites and Cr-rich magnesian schists. The metamafites comprise amphibolites, metagabbros and metadiorites. The metasedimentary unit comprises calcitic marbles, which are intruded by mafic dykes. The ophiolite is found along the Ayrosa Galvão- Arroio Grande Shear Zone (transcurrent, ductile, high angle), responsible for the mylonitization of this association. The investigations developed in this ophiolite had the objective of identify the magmatic sources of the protoliths and the processes that occurred since their generation within the mantle/oceanic crust until their incorporation into the continental crust, including their absolute and relative ages. The bulk-rock chemistry of the metaultramafites (e.g. Ni >1000 ppm; Cr > 1500 ppm), together with the mineral chemistry of the chromites (e.g. Cr# 0.6-0.8; TiO2 0.01-0.20 wt%; Fe2+/Fe3+ ± 0.9), suggested harzburgitic protoliths, attributed to a depleted mantle source under a back-arc spreading region, which experienced high degrees of partial melting. These harzburgites were serpentinized in an oceanic setting, as suggested by the 87Sr/86Sr630 ratio of a serpentinite (ca. 0.707). The bulkrock chemistry of the metamafites suggested oceanic tholeiitic protoliths, generated in a supra-subduction setting in a back-arc environment (e.g. Cr 260-600 ppm; Nb/Y 0.1-0.5; Ti/Y ± 500; La/Nb 2-5; Th/Yb 0.1-5 and Nb/Yb 1-5; REE patterns; 87Sr/86Sr630 ratios ranging from MORB – 0.703 – to IAT – 0.705-0.707), whose magmatic source was contaminated by crustal material and subduction-related fluids. The minimum age for the obduction and metamorphism of the Arroio Grande Ophiolite rocks was estimated around 640 Ma from the U-Pb age of a quartz-syenite. The latter is the result of melting, related to dioritic-tonalitc intrusions, attributed to the continental magmatism of the Pinheiro Machado Suite. These intrusions affected both the marbles and the amphibolites (fragments of the mafic dykes), in order that, at least around 640 Ma, rocks of the ophiolitic mélange (already metamorphosed) were emplaced on the continent. A late metasomatic event (related to the emplacement of the Três Figueiras Granite, syn-kinematic to the abovementioned shear zone) affected the serpentinites, generating zones of talcification, tremolitization and chloritization, the latter representing a blackwall which also involved metasiliciclastic rocks of the Arroio Grande Complex. The Arroio Grande Ophiolite was inserted in the geotectonic context of the Marmora back-arc basin, whose fragments are found in Namibia (Marmora Terrane) and Uruguay (Paso del Dragón Complex and Rocha Basin – Punta del Este Terrane).

Page generated in 0.0225 seconds