• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 3
  • 2
  • Tagged with
  • 50
  • 26
  • 14
  • 11
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Evolution of Seasonal Variations in Motion of the Kaskawulsh Glacier, Yukon Territory

Herdes, Emilie January 2014 (has links)
Differential GPS data from 2007-2014 are used to assess horizontal and vertical velocity variations of the Kaskawulsh Glacier at interannual and intra-annual timescales. These indicate that an upglacier propagating high velocity event occurs every spring at the onset of melt, and that a downglacier propagating high velocity event occurs every fall or winter after melt has finished. These events suggest that the subglacial drainage system alternates between a distributed system in the winter and channelized system in the summer and fall. In addition, there is a strong negative correlation between summer melt and velocity the following fall and winter, with strong melt years resulting in low velocities. For each additional metre of summer melt, an 8.6% average decrease in velocity is observed on the glacier the following fall-winter. These results suggest that changes in the subglacial drainage system limit the sensitivity of glacier motion to increased meltwater inputs. Glacier motion will likely show a net decrease under a warming climate due to the negative correlation between surface melt rates and ice motion and a decrease in driving stresses as a result of reduced ice thicknesses. In addition, future fall-winter velocity patterns could be accurately predicted from only a month or two of summer melt data, with May-June melt providing the best indication of fall-winter motion. This study also suggests that the common assumption that glaciers are ‘stable’ in the late fall and winter is incorrect.
12

Investigating the Timing of Deglaciation and the Efficiency of Subglacial Erosion in Central-Western Greenland with Cosmogenic 10Be and 26Al

Corbett, Lee B. 15 July 2011 (has links)
This work aims to study the behavior of the western margin of the Greenland Ice Sheet during a period of pronounced ice retreat roughly 10,000 years ago, after the end of the last glacial period. It explores the efficiency of subglacial erosion, the spatial dynamics of ice retreat, and the rates of ice retreat. To address these questions, I use the radionuclides 10Be and 26Al, which form in rocks due to the bombardment of cosmic rays, only after the rocks have been exposed from underneath retreating ice. These nuclides can be used as a geologic dating technique to explore exposure history. Before applying this dating technique to address geological questions, it was critical to first perform methodological development. My work in the University of Vermont‘s new Cosmogenic Nuclide Laboratory served to improve the precision and efficiency of the pre-existing laboratory methods. New methodological advances ensured that samples from Greenland, which contained only low concentrations of 10Be and 26Al, could be used to yield meaningful results about ice behavior. Cosmogenic nuclide dating was applied at two sites along the ice sheet margin in central-western Greenland. At both of these sites, I collected paired bedrock and boulder samples in a transect normal to and outside of the present-day ice sheet margin. Samples were collected from a variety of elevations at numerous locations along the transects, thus providing three-dimensional coverage of the field area. After isolating the mineral quartz from the rocks, and isolating the elements Be and Al from the quartz, isotopic analysis was performed using accelerator mass spectrometry to quantify the relative abundances of the radionuclides against their respective stable isotopes. The southern study site, Ilulissat, is located on the western coast of Greenland at a latitude of 69N. Much previous work has been conducted here due to the presence of one of the largest ice streams in the northern hemisphere, Jakobshavn Isbræ. My work in Ilulissat demonstrated that subglacial erosion rates were high during previous glacial periods, efficiently sculpting and eroding the landscape. Ice retreat across the land surface began around 10,300 years ago, and the ice sheet retreated behind its present-day margin about 7,600 years ago. Ice retreat occurred at a rate of about 100 meters per year. My work in this area suggests that retreat in the large ice stream set the pace and timing for retreat of the neighboring ice sheet margin. The northern site, Upernavik, is located on the western coast of Greenland at a latitude of 73N. Little research has been conducted here in the past. Unlike in Ilulissat, my work here shows that the ice sheet did not efficiently erode the landscape, especially at high elevations, during previous glacial periods. This is likely because the ice was thinner, and therefore had a colder base, than the ice in Ilulissat. My work suggests that ice cover was lost from this area very rapidly, likely at rates of about 170 meters per year, in a single episode around 11,300 years ago. Comparison between the two study sites reveals that ice characteristics can vary appreciably over relatively small distances.
13

A Model of Basal Hydrologic Networks and Effective Stress Beneath an Ice Sheet

Papamarcos, Sara, Papamarcos, Sara January 2012 (has links)
Subglacial processes that control the water pressure and flow determine the large-scale behavior of the overlying ice by regulating basal resistance. We implement a model in which a steady-state subglacial conduit system is surrounded by fully saturated porous media. We investigate branching in this system at fixed angles of 15 degrees, 30 degrees and 45 degrees to the direction of ice flow and further assess these systems by calculating the hydraulic potential gradient to determine conduit flow path. We solve our governing equations for porous media flow and allow ice infiltration of the pore space to occur at a critical effective stress N infiltration. For low values of N infiltration, ice infiltration of sediment allows these conduits to follow their original paths. Where insufficient ice infiltration occurs, the conduit path instead lies parallel to the direction of ice flow. Our results speak to the importance of incorporating small-scale processes into models of subglacial hydrologic networks.
14

Nature and dynamics of ice-stream beds : assessing their role in ice-sheet stability

Davies, Damon January 2018 (has links)
Ice streams are fast flowing outlet glaciers through which over 90% of the ice stored within the Antarctic Ice Sheet drains. The dynamic behaviour of ice streams is therefore crucial in controlling the mass balance of the ice sheet. Over the past few decades, Antarctica has been losing mass. Much of this mass loss has been focussed around coastal regions of the Antarctic Ice Sheet. Some of the most dramatic changes such as grounding-line retreat, acceleration and surface elevation change have been observed in Pine Island Glacier (PIG) and its neighbouring ice streams. This is of particular concern because these ice streams account for 10% of the discharge from the west Antarctic Ice Sheet and therefore have the potential to contribute significantly to global sea-level rise. One of the key challenges in accurately forecasting this future sea-level rise is improving understanding of processes occurring at the beds of ice streams. This requires detailed knowledge of the properties and dynamics of the bed. This thesis aims to address this knowledge gap by investigating the spatial and temporal characteristics of the bed of PIG using high-resolution geophysical data acquired in its trunk and tributaries and beneath the ice shelf. The thesis begins by analysing radar-derived high-resolution maps of subglacial topography. These data show a contrasting topography across the ice-bed interface. These diverse subglacial landscapes have an impact on ice flow through form drag, controlled by the size and orientation of bedrock undulations and protuberances. The next chapter provides a quantitative analysis of these landscapes using Fast Fourier analysis of subglacial roughness. This analysis investigates the roughness signature of subglacial bedforms and the how the orientation and wavelength of roughness elements determine their correlation with ice dynamic parameters. The slow-flowing inter-tributary site is found to have a distinct signature comparable to 'ribbed' patterns of modelled basal shear stress and transverse 'mega rib' bedforms. Roughness oriented parallel to ice flow with wavelengths approaching mean ice thickness are found to have the highest correlation with ice dynamic parameters. The temporal stability of PIG is analysed using repeat radar measurements. No significant change is observed over a period of 3-6 years with no evidence of rapid erosion or the evolution of subglacial bedforms as observed in previous repeat measurements of ice-stream beds elsewhere in Antarctica. This suggests that the widespread deforming till layer detected in extensive seismic reflection surveys is in steady state. Lastly, the thesis explores geomorphological evidence of twentieth-century grounding-line retreat beneath PIG Ice Shelf using high-resolution geophysical data acquired from autonomous underwater vehicle surveys. Evidence of erosion, deposition, meltwater flow and post-glacial modification is observed in fine detail. The observed distribution of sediment supported previous surveys indicating a geological transition coinciding with the ridge that acted as a former stable grounding-line location. Metre-scale resolution images of recently deglaciated ice stream beds were found to reveal bedforms that are not detectable with traditional offshore bathymetric surveys. Together these findings reveal the role of short wavelength topography as both an influence on, and product of fast ice stream flow. It also highlights the spatial diversity of subglacial environments and the need to focus future research on tying detailed observations of ice-stream beds with knowledge of basal properties over time.
15

Eruption dynamics within an emergent subglacial setting : a case study of the 2004 eruption of Grímsvötn volcano, Iceland

Jude-Eton, Tanya Chantal January 2013 (has links)
The November 2004 explosive eruption of Grímsvötn volcano, Iceland (G2004) commenced as a subglacial event within the interior of the Vatnajökull ice cap before breaking through the ice cover to generate a 6-10 km high eruption column. This produced a tephra apron extending >50 km across the ice surface northwards from the eruption site, incorporating 0.047 km3 (DRE) of plagioclase-bearing, sparsely porphyritic, basaltic tephra. This study focuses on quantifying the key eruption parameters and evaluating the stratigraphy, grain size and geochemical characteristics of the proximal facies of the subaerial deposit with a level of detail and precision that has never previously been possible for a modern glacio-volcanic event. The G2004 deposit consists of a finely layered sequence which is subdivided into seven units (A-G) on the basis of differences in texture, grain size and componentry and the presence of sharp contacts between the layers. It is poorly sorted and finegrained with a median clast diameter of 1.5 Φ. The grain size characteristics and clast morphologies are indicative of intense phreatomagmatic fragmentation, despite a significant component of highly vesicular juvenile glass. A wide range in thicknesses and geometries of depositional units reflects variations in intensity and style of activity. Units C and E account for 80% of the total deposit volume, including the entire distal portion, and are interpreted to represent a mixture of (i) a widely dispersed component that fell from the upper margins of a strongly inclined (~45°) 6-10 km high plume and (ii) a locally dispersed (<3 km from source) component originating from (1) pyroclastic density currents generated by shallow explosions and tephra jets and (2) sedimentation from the jet region and lower convective column margins. The other units are only locally dispersed around the vent. A significant proportion of fine material was deposited in the near-vent region due to particle aggregation processes. The bulk of the G2004 deposit is therefore identified as the product of continuous incremental deposition during the passage of a single quasi-steady current supplied by a sustained explosive phreatomagmatic eruption, with a variable contribution of material from concurrent tephra fallout. Major oxide, trace element and volatile composition of the G2004 tephra were analysed and compared with that of the G1998 and Laki events. Results indicate that the G2004 magma originated within a shallow-level, compositionally stratified chamber and was discharged through an independent plumbing system. The parent magmas for each of these three Grímsvötn events were produced by different degrees of partial melting within a similar lower-crust or mantle source, but are not related by fractional crystallization or magma mixing. Despite episodic intense vesiculation, the G2004 magma was fragmented at very shallow levels by almost exclusively phreatomagmatic mechanisms – the effect of which was to arrest the degassing process such that only 75% of the potential magmatic sulphur budget escaped to the atmosphere.
16

An Early Paleogene Palynological Assemblage from the Sabrina Coast, East Antarctica: New Species and Implications for Depositional History

Smith, Catherine Davies 10 November 2016 (has links)
Palynological analyses of 13 samples from two sediment cores retrieved from the Sabrina Coast, East Antarctica, provide the first information regarding the paleovegetation within the Aurora Subglacial Basin. The assemblages, hereafter referred to as the Sabrina Flora, are dominated by angiosperms, with complexes of Gambierina (G.) rudata and G. edwardsii representing 38–66% of the assemblage and an abundant and diverse Proteaceae component. The Sabrina Flora also includes Battenipollis sectilis, Forcipites sp. and Nothofagidites spp. (mostly belonging to the N. cf. rocaensis-flemingii complex), along with a few fern spores, including Laevigatosporites ovatus, a moderate presence of conifers, and previously undescribed morphospecies, two of which are described herein. A majority of the assemblage is interpreted as deposited contemporaneously with sedimentation, including Gambierina spp., which is traditionally assigned a Cretaceous–earliest Eocene age range. However, our age diagnosis for the Sabrina Flora, based on key morphospecies, indicates that sediment was most likely deposited between the latest Paleocene to possibly early–middle Eocene, if Gambierina rudata and G. edwardsii extended longer than previously thought. Additionally, we observed abundant dinoflagellate cysts of Campanian age. The absence of typical Paleocene–middle Eocene dinoflagellate cysts suggests that strata recovered were fluvial-dominated or proximal marine, with a major contribution of reworking of Campanian marine sediment. This study adds to the available East Antarctic palynological data and provides information on regional differences along the East Antarctic margin, as well as with southern Australia. The pollen diversity and the large relative abundance of Gambierina spp., along with the rarity of Nothofagidities spp., (fusca group), and the lack of megathermal elements (e.g., Arecaceae) separate the Sabrina Flora from those of other East Antarctic margin and southern Australian basin sites.
17

Volatiles in Subglacially Erupted Basaltic Glasses and Their Use in Reconstructing Paleo-Ice Thicknesses

Lee, Carver 24 March 2017 (has links)
Volatile concentrations in basaltic tuyas, edifices that form during a subglacial eruption and remain once the ice sheet has retreated, have been used to calculate the thickness of the overlying ice sheet at the onset of the eruption (Tuffen, 2010). However, subglacial eruptions are complex events and this technique does not always provide a clear answer (Schopka et al., 2006; Edwards et al., 2009). The purpose of this research is to evaluate this technique and investigate constraints on the quality of data collected by attempting to calculate the minimum ice thickness under which Hlöðufell, a tuya in south-central Iceland, erupted. Hlöðufell is a Holocene tuya located in the Western Rift Zone of Iceland, 9 km south from the modern edge of Langjökull ice cap. Dissolved H2O concentrations were measured using Fourier transform infrared spectroscopy (FTIR) and quenching pressures were calculated using the VolatileCalc pressure-solubility model (Newman and Lowenstern, 2002). Overlying ice thickness was calculated by relating quenching pressures, the density of ice, and the elevation of the sample. Water concentrations range from 0.068 –to 0.478 wt. % H2O, representing pressures ranging from 0.66 to 24.72 bars. These pressures represent ice thicknesses between 0 and 268 m thick. The minimum ice thickness level is represented in the lithofacies of the tuya by the passage zone, the transition between subaerial and subaqueous flows. The minimum ice thickness for Hlöðufell is ~ 500 m, much thicker than this study calculated using water concentrations. This indicates that the volatile concentrations in the basaltic glasses at Hlöðufell do not record the accurate quenching pressure. We interpret the overall low water concentrations to mean that our samples must have degassed at or close to atmospheric pressures at higher elevations, and flowed downslope into areas of thicker ice or deeper melt-water before quenching. These results show that subglacial eruptions and degassing processes are complex and variable and require further investigation.
18

Glaciovolcanic megapillows of Undirhliðar, Reykjanes Peninsula, southwestern Iceland

Heineman, Rachel 10 August 2017 (has links)
No description available.
19

USING GLACIAL DISPERSAL PATTERNS TO UNDERSTAND THE SPATIAL DISTRIBUTION OF SUBGLACIAL QUARRYINGDr

LaBlanc, Kelly J. 05 October 2007 (has links)
No description available.
20

Tunnel Valley Genesis and Subglacial Dynamics in South-Central Ontario

Mulligan, Riley January 2019 (has links)
Glacial sediments are found across formerly glaciated regions across the world and host a variety of important resources, ranging from groundwater to hydrocarbons, aggregate material, and mineral deposits. In southern Ontario, Canada, thick successions (up to 200 m) of Quaternary glacial sediments are truncated by large valleys (>30km long, 2 to >8.5 km wide, and up to 200m deep) that formed subglacially and have characteristic morphology and infill stratigraphy. These valleys are interpreted as (a new class of) tunnel valleys and strongly affect groundwater resources and flow systems at local and regional scales. The overall context of the valleys is evaluated through an introduction to the study area, objectives, and background information on subglacial systems and geologic history of south-central Ontario (Chapter 1). Interpretation of valley genesis in Simcoe County is provided through an integrated, multi-faceted approach, involving: description of the morphology and sediment infill succession within the valleys from surficial mapping, sedimentological logging of continuously-cored boreholes, and geophysical surveys (Chapter 2); delineation and characterization of seismic architecture from high-resolution lake-based sub-bottom profiles in one of the valleys (Chapter 3); detailed site-scale field description of the internal characteristics of the regional Late Wisconsin till sheet in various subglacial settings (Niagara Escarpment, uplands, lowlands; Chapter 4); comparison of the characteristics of the subglacial bed within the study area to adjacent regions in southern Ontario (Chapter 5); and a synthesis of the major findings from all the different components of this investigation and suggestions for future work to shed further light on several questions that arise from this study (Chapter 6). Together, key data from these studies of tunnel valleys and related deposits – a near-continuous till sheet on the surface of uplands and along the flanks and floors of the tunnel valleys, multi-stage drumlinization of the till sheet following development of the tunnel valleys, variations in internal facies and physical properties within the till sheet in different subglacial settings, localized distribution of coarse-grained tunnel valley in-fill sediments, and gradational upward transitions from tunnel valley in-fills to fossiliferous proglacial lacustrine sediments – indicate multiple phases of subglacial meltwater, and direct subglacial, erosion and deformation contributed to the development of the valleys over a protracted time period during the Late Wisconsin. Landform and sediment associations within the valleys in Simcoe County and surrounding parts of the bed of the former Laurentide ice sheet in south-central Ontario, are inconsistent with previous conceptualizations involving the presence of large (>1000 km2) subglacial lakes and the storage and discharge of regional-scale subglacial meltwater sheetfloods followed by ice stagnation. This study provides new data and insight to help refine reconstructions and better understand the evolution of past ice dynamics and subglacial processes, evaluate competing theories of regional landscape evolution, and provide new conceptual and (hydro)stratigraphic frameworks for future hydrogeological investigations related to groundwater exploration and use. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.0286 seconds