• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 3
  • 2
  • Tagged with
  • 50
  • 26
  • 14
  • 11
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Implementation of in-field life detection and characterisation techniques in icy environments

Barnett, Megan January 2010 (has links)
An emerging trend towards non-laboratory based biological and microbiological marker analysis is occurring in multiple sectors of science and industry. In the medical sector, these trends have demonstrated that conducting sample analyses away from centralised laboratories not only makes analyses quicker and more convenient (e.g. a home pregnancy test), but can offer services that are otherwise impractical (e.g. mobile laboratories to diagnose disease in the developing world). In the environmental sector, similar benefits, plus the ability to develop and test hypotheses, protocols and sampling strategies within a field campaign, are possible with in-field analyses. Icy environments in particular would benefit from in situ or in-field life detection as they are typically remote, and hence impart high logistical costs for repeated field campaigns and associated sample return with the implication that the efficiency of scientific return is poor. Unfortunately, most equipment and protocols developed for microbiological analyses in other sectors of science and industry are unsuitable for direct application to in-field use in icy environments because of poor compatibility with icy environment sample matrices and frequently inappropriate microbiological targets. Hence within this work, two hypotheses were tested: that (i) microbiological detection infield in icy environments is possible and through this (ii) unique and more efficient scientific studies can be conducted. Cont/d.
22

Modelling the hydrology of the Greenland ice sheet

Karatay, Mehmet Rahmi January 2011 (has links)
This thesis aims to better understand the relationships between basal water pressure, friction, and sliding mechanisms at ice sheet scales. In particular, it develops a new subglacial hydrology model (Hydro) to explicitly predict water pressures in response to basal water production and water injection from the surface. Recent research suggests that the Greenland ice sheet (gis) is losing a substantial volume of ice through dynamic thinning. This process must be modelled to accurately assess the contribution of the gis to sea-level rise in future warming scenarios. A key control on dynamic thinning is the presence of water at the ice-bed interface; Zwally et al. (2002) highlight the importance of supraglacial lakes' impact on basal ice dynamics, a process now con rmed by Das et al. (2008) and Shepherd et al. (2009). Many studies focus on the effects of surface meltwater reaching the bed of the gis but the underlying processes are often ignored. Geothermal, strain, and frictional melting, which evolves with basal hydrology, provide the background basal pressure profile that surface meltwater perturbates. Without understanding how these heat terms affect the background profile it is difficult to define basal boundary conditions in models and therefore difficult to model the dynamic response of the gis to surface melting. Hydro tracks subglacial water pressures and the evolution of efficient drainage networks. Coupled with the existing 3D thermomechanical ice sheet model Glimmer, model outputs include effective pressure N and the efficient hydraulic area. Defining frictional heat flux and basal traction as functions of N allow the modelling of seasonal dynamic response to randomly draining supraglacial lakes. Key results are that frictional heat flux, as a function of N, caps potential runaway feedback mechanisms and that water converges in topographic troughs under Greenland's outlet glaciers. This leads to a background profile with low N under outlet glaciers. Therefore, outlet glaciers show a muted dynamic speedup to the seasonal surface signal reaching the bed. Land-terminating ice does not tend to have subglacial troughs and so has higher background N and consequently a larger seasonal response. This, coupled with effects of ice rheology, can explain the hitherto puzzling lack of observed seasonal velocity change on Jakobshavn Isbræ and other outlet glaciers.
23

Ice-stream dynamics : the coupled flow of ice sheets and subglacial meltwater

Kyrke-Smith, Teresa Marie January 2014 (has links)
Ice sheets are among the key controls on global climate and sea level. A detailed understanding of their dynamics is crucial to make accurate predictions of their future mass balance. Ice streams are the dominant negative component in this balance, accounting for up to 90% of the Antarctic ice flux into ice shelves and ultimately into the sea. Despite their importance, our understanding of ice-stream dynamics is far from complete. A range of observations associate ice streams with meltwater. Meltwater lubricates the ice at its bed, allowing it to slide with less internal deformation. It is believed that ice streams may appear due to a localisation feedback between ice flow, basal melting and water pressure in the underlying sediments. This thesis aims to address the instability of ice-stream formation by considering potential feedbacks between the basal boundary and ice flow. Chapter 2 considers ice-flow models, formulating a model that is capable of capturing the leading-order dynamics of both a slow-moving ice sheet and rapidly flowing ice streams. Chapter 3 investigates the consequences of applying different phenomenological sliding laws as the basal boundary condition in this ice-flow model. Chapter 4 presents a model of subglacial water flow below ice sheets, and particularly below ice streams. This provides a more physical representation of processes occurring at the bed. Chapter 5 then investigates the coupled behaviour of the water with the sediment, and Chapter 6 the coupled behaviour of the water with the ice flow. Under some conditions this coupled system gives rise to ice streams due to instability of the internal dynamics.
24

Basal boundary conditions, stability and verification in glaciological numerical models

Helanow, Christian January 2017 (has links)
To increase our understanding of how ice sheets and glaciers interact with the climate system, numerical models have become an indispensable tool. However, the complexity of these systems and the natural limitation in computational power is reflected in the simplifications of the represented processes and the spatial and temporal resolution of the models. Whether the effect of these limitations is acceptable or not, can be assessed by theoretical considerations and by validating the output of the models against real world data. Equally important is to verify if the numerical implementation and computational method accurately represent the mathematical description of the processes intended to be simulated. This thesis concerns a set of numerical models used in the field of glaciology, how these are applied and how they relate to other study areas in the same field. The dynamical flow of glaciers, which can be described by a set of non-linear partial differential equations called the Full Stokes equations, is simulated using the finite element method. To reduce the computational cost of the method significantly, it is common to lower the order of the used elements. This results in a loss of stability of the method, but can be remedied by the use of stabilization methods. By numerically studying different stabilization methods and evaluating their suitability, this work contributes to constraining the values of stabilization parameters to be used in ice sheet simulations. Erroneous choices of parameters can lead to oscillations of surface velocities, which affects the long term behavior of the free-surface ice and as a result can have a negative impact on the accuracy of the simulated mass balance of ice sheets. The amount of basal sliding is an important component that affects the overall dynamics of the ice. A part of this thesis considers different implementations of the basal impenetrability condition that accompanies basal sliding, and shows that methods used in literature can lead to a difference in velocity of 1% to 5% between the considered methods. The subglacial hydrological system directly influences the glacier's ability to slide and therefore affects the velocity distribution of the ice. The topology and dominant mode of the hydrological system on the ice sheet scale is, however, ill constrained. A third contribution of this thesis is, using the theory of R-channels to implement a simple numerical model of subglacial water flow, to show the sensitivity of subglacial channels to transient processes and that this limits their possible extent. This insight adds to a cross-disciplinary discussion between the different sub-fields of theoretical, field and paleo-glaciology regarding the characteristics of ice sheet subglacial hydrological systems. In the study, we conclude by emphasizing areas of importance where the sub-fields have yet to unify: the spatial extent of channelized subglacial drainage, to what degree specific processes are connected to geomorphic activity and the differences in spatial and temporal scales. As a whole, the thesis emphasizes the importance of verification of numerical models but also acknowledges the natural limitations of these to represent complex systems. Focusing on keeping numerical ice sheet and glacier models as transparent as possible will benefit end users and facilitate accurate interpretations of the numerical output so it confidently can be used for scientific purposes. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p> / Greenland Analogue Project
25

Investigations into the Regional and Local Timescale Variations of Subglacial Drainage Networks

Hiester, Justin 04 June 2013 (has links)
Subglacial water plays an important role in the regulation of an ice sheet's mass balance. It may be the dominant control on the velocities of ice streams and outlet glaciers on scales of months to millennia. Recent satellite observations of ice surface elevation changes have given researchers new insights into how subglacial water is stored and transported. Localized uplift and settling of the ice surface implies that lakes exist beneath the ice sheet that are being filled and drained on relatively short time scales. %At the base of an ice sheet water can be transported through a variety of drainage networks or stored in subglacial lakes. Here, a numerical investigation of the mechanisms of transport and storage of subglacial water and the associated time scales is presented. Experiments are carried out using a finite element model of coupled ice and water flow. The first experiment seeks to understand the relationship between the depth of a basal depression and the area over which the feature affects basal water flow. It is found that as the perturbation to a topographic depression's depth is increased, water is rerouted in response to the perturbation. Additionally it is found that the relationship between perturbation depth and the extent upstream to which its effects reach is nonlinear. The second experiment examines how the aspect ratio of bed features (prolate, oblate, or equidimensional) influences basal water flow. It is found that the systems that develop and their interactions are mediated by both the topography and the feedbacks taken into account by the coupling of the systems in the model. Features oriented parallel to ice and water flow are associated with distributed fan systems that develop branches which migrate laterally across the domain and interact with one another on monthly and yearly timescales. Laterally oriented features develop laterally extensive ponds. As the ratio of longitudinal to lateral dimension of the topography is increased, a combination of these two water distributions is seen.
26

Grounding Zone Processes: Ice Mechanics and Margin Lakes, Kamb Ice Stream and Whillans Ice Stream, West Antarctica

Fried, Mason Joseph 23 July 2013 (has links)
The lateral "corners" where Kamb and Whillans Ice Streams (KIS and WIS) discharge into the Ross Ice Shelf share common geometries and ice mechanical settings. At both corners of the now-stagnant KIS outlet, shear margins of apparently different ages confine regions with a relatively flat, smooth surface expression. These features are called the "Duckfoot" on the northern, right-lateral side and the "Goosefoot" on the other. It has been suggested, on evidence found in ice internal layers, that the flat ice terrains on KIS were afloat in the recent past, at a time when the ice stream grounding line was upstream of its present location. The overdeepening in the bed just upstream of the KIS grounding line supports this view of the past geometry. The right-lateral margin at the outlet of the currently active WIS, the location of Subglacial Lake Englehardt (SLE), appears to have many similarities with the right lateral margin of KIS, though with a less developed looking inboard margin. This paper presents a mechanical analysis using surface and bed topography and velocity datasets comparing the Duckfoot flat ice terrain with the terrain around Subglacial Lake Englehardt. At both locations mechanical thinning along shear margins and lows in the bed topography redirects basal water routing towards the features. Here, I consider the history of these features and their role in ice stream variability by comparison of the relict and modern features and via numerical modeling of ice shelf grounding and ungrounding in response to variations in ice flow. We propose two scenarios for the development of flat ice terrains/subglacial lakes at the outlets of ice streams. In the first, development of a lake in the hydraulic potential low along a shear margin forces a margin jump as shearing develops along the inboard shore of the margin lake. This thesis presents evidence for an inboard (relative to the main outboard shear margin) zone of shear along the inboard shoreline of SLE, suggesting that subglacial lakes along shear margins are capable of facilitating shear margin jumps. In the second, grounding line advance around a relative low in the bed, creating adjacent margins along the lakeshores, forms a remnant lake. Discerning which of these scenarios is appropriate at the KIS outlet has implications for understanding the history of the ice stream grounding line. An ice flow model is used to place these local conditions in a regional context by studying the effect of internal perturbations, such as ice rise stagnation or inward margin jumps, on grounding line position. Bathymetry is important in determining ice stream flow in the ways that might not be otherwise realized in 1-D flow model studies. In the numerical modeling experiments, grounding line advance across the KIS outlet is mediated by the overdeepening in the bed and proceeds not in the direction of ice flow but transverse to flow. This finding adds complexity to both a flowline view of grounding line migration and the theory that grounding lines are unstable in the presence of inward sloping bed topography.
27

Glacial dynamics and till genesis in hilly terrain : A study in the Tallträsk area, central-northern Sweden

Ivarsson, Hans January 2007 (has links)
<p>This study deals with the influence of topography on glacial dynamics and the genesis of till in an area of moder-ate bedrock relief. An area 25 km west of Lycksele, northern Sweden, was investigated using geomorphological and sedimentological methods. The bedrock is dominated by coarse-grained granites and the topography, ranging in altitude between 310 and 490 m. a.s.l., is characterized by relatively wide, free-lying hills.</p><p>The erosional and depositional features provide evidence of several glacial events, with regional ice flows from approximately the same direction (NW-NNW). The gravel fraction of the till is dominated by material transported more than 10 km. However, the total glacial erosion has been modest, as indicated by the frequent occurrence of residual pre-glacial weathering features. There is no evidence of warm-based conditions during the period when the ice divide of the Late Weichselian ice sheet was situated E-SE of the study area. The major mor-phological impact is most likely by pre-Late Weichselian ice sheets.</p><p>The general stratigraphy at the valley floors is a complex sequence of heterogeneous till and beds of sorted sediments with some evidence of glacial deformation covered by an up to 2.5-m-thick, texturally homogeneous till layer with distinct fissility structure and clast fabric orientation. The lower unit is interpreted as pre-Late Weichselian marginal deposits, and the upper till as mainly formed during rigid-bed conditions, i.e. by lodgement, during the last deglaciation. The role of pervasive deformation and melt-out in the formation of the upper till are discussed. Inferred mainly from till fabrics it is evident that the ice flow was strongly topographically controlled within a relatively wide marginal zone of the retreating ice.</p><p>At the summits of the hills there are only signs of very weak glacial abrasive and depositional activity, sug-gesting frozen based conditions over the summits until a very late stage of the deglaciation. The very thin till at the summits, which also lay as a drape over the thick lee-side deposits, consists of a mixture of relatively fine-grained, distantly derived debris and of local bedrock fragments entrained during a very late phase of plucking.</p><p>On the stoss- and lateral slopes of the hills the till is thin and discontinuous. The irregular bedrock surface in these areas created a “mosaic” of small-scale subglacial depositional environments, which were superimposed on the changes in the conditions for deposition along the hillslope. This till is comparatively coarse-grained, which is interpreted as an effect of syn-depositional winnowing of fines, and locally also because of the incorporation of local bedrock material largely from pre-glacially weathered zones.</p><p>On the lee-sides of the hills the deposits are considerably thicker than on slopes facing other directions. They are characterized by highly variable texture and structure, suggesting a depositional environment characterized by large temporal and spatial variations in meltwater activity and stress/strain conditions. The lee-side tills are inter-preted as mainly pre-Late Weichselian in age.</p><p>The overall conclusion is that the local topography strongly controlled the basal ice flow and produced a com-plex pattern of thermal variations within a relatively wide marginal zone of the ice sheet during the last deglacia-tion. The study supports the view that there are complete transitions between the different genetical types of sub-glacial tills, although the role of deformation by pervasive shearing is uncertain in this type of coarse-grained till.</p>
28

Glacial dynamics and till genesis in hilly terrain : A study in the Tallträsk area, central-northern Sweden

Ivarsson, Hans January 2007 (has links)
This study deals with the influence of topography on glacial dynamics and the genesis of till in an area of moder-ate bedrock relief. An area 25 km west of Lycksele, northern Sweden, was investigated using geomorphological and sedimentological methods. The bedrock is dominated by coarse-grained granites and the topography, ranging in altitude between 310 and 490 m. a.s.l., is characterized by relatively wide, free-lying hills. The erosional and depositional features provide evidence of several glacial events, with regional ice flows from approximately the same direction (NW-NNW). The gravel fraction of the till is dominated by material transported more than 10 km. However, the total glacial erosion has been modest, as indicated by the frequent occurrence of residual pre-glacial weathering features. There is no evidence of warm-based conditions during the period when the ice divide of the Late Weichselian ice sheet was situated E-SE of the study area. The major mor-phological impact is most likely by pre-Late Weichselian ice sheets. The general stratigraphy at the valley floors is a complex sequence of heterogeneous till and beds of sorted sediments with some evidence of glacial deformation covered by an up to 2.5-m-thick, texturally homogeneous till layer with distinct fissility structure and clast fabric orientation. The lower unit is interpreted as pre-Late Weichselian marginal deposits, and the upper till as mainly formed during rigid-bed conditions, i.e. by lodgement, during the last deglaciation. The role of pervasive deformation and melt-out in the formation of the upper till are discussed. Inferred mainly from till fabrics it is evident that the ice flow was strongly topographically controlled within a relatively wide marginal zone of the retreating ice. At the summits of the hills there are only signs of very weak glacial abrasive and depositional activity, sug-gesting frozen based conditions over the summits until a very late stage of the deglaciation. The very thin till at the summits, which also lay as a drape over the thick lee-side deposits, consists of a mixture of relatively fine-grained, distantly derived debris and of local bedrock fragments entrained during a very late phase of plucking. On the stoss- and lateral slopes of the hills the till is thin and discontinuous. The irregular bedrock surface in these areas created a “mosaic” of small-scale subglacial depositional environments, which were superimposed on the changes in the conditions for deposition along the hillslope. This till is comparatively coarse-grained, which is interpreted as an effect of syn-depositional winnowing of fines, and locally also because of the incorporation of local bedrock material largely from pre-glacially weathered zones. On the lee-sides of the hills the deposits are considerably thicker than on slopes facing other directions. They are characterized by highly variable texture and structure, suggesting a depositional environment characterized by large temporal and spatial variations in meltwater activity and stress/strain conditions. The lee-side tills are inter-preted as mainly pre-Late Weichselian in age. The overall conclusion is that the local topography strongly controlled the basal ice flow and produced a com-plex pattern of thermal variations within a relatively wide marginal zone of the ice sheet during the last deglacia-tion. The study supports the view that there are complete transitions between the different genetical types of sub-glacial tills, although the role of deformation by pervasive shearing is uncertain in this type of coarse-grained till.
29

Evolving subglacial water systems in East Antarctica from airborne radar sounding

Carter, Sasha Peter, 1977- 06 September 2012 (has links)
The cold, lightless, and high pressure aquatic environment at the base of the East Antarctic Ice Sheet is of interest to a wide range of disciplines. Stable subglacial lakes and their connecting channels remain perennially liquid three kilometers below some of the coldest places on Earth. The presence of subglacial water impacts flow of the overlying ice and provides clues to the geologic properties of the bedrock below, and may harbor unique life forms which have evolved out of contact with the atmosphere for millions of years. Periodic release of water from this system may impact ocean circulation at the margins of the ice sheet. This research uses airborne radar sounding, with its unique ability to infer properties within and at the base of the ice sheet over large spatial scales, to locate and characterize this unique environment. Subglacial lakes, the primary storage mechanism for subglacial water, have been located and classified into four categories on the basis of the radar reflection properties from the sub-ice interface: Definite lakes are brighter than their surroundings by at least two decibels (relatively bright), and are both consistently reflective (specular) and have a reflection coefficient greater than --10 decibels (absolutely bright). Dim lakes are relatively bright and specular but not absolutely bright, possibly indicating non-steady dynamics in the overlying ice. Fuzzy lakes are both relatively and absolutely bright, but not specular, and may indicate saturated sediments or high frequency spatially heterogeneous distributions of sediment and liquid water (i.e. a braided steam). Indistinct lakes are absolutely bright and specular but no brighter than their surroundings. Lakes themselves and the different classes of lakes are not arranged randomly throughout Antarctica but are clustered around ice divides, ice stream onsets and prominent bedrock troughs, with each cluster demonstrating a different characteristic lake classification distribution. In the bedrock trough of Adventure Subglacial Trench, analysis of satellite altimetry is combined with radar sounding data to calculate a mass budget and infer a flow mechanism for a two cubic kilometer discharge reported to have traveled between two lakes in the region from 1996 -1998. The volume released from the source lake exceeded the volume received by the destination lakes by one and a tenth cubic kilometers, indicating that some water must have escaped downstream from the lowest destination lake over the course of the event. Release of water from the source lake preceded arrival of the water at the destination lakes, 260 kilometers away, by about three months. Water continued draining from the destination lakes for several years after surface subsidence at the source lake had ceased. By 2003, a total of one and a half cubic km or nearly 75% of the water released by the source lake had traveled downstream from the destination lakes. Hydraulic modeling work indicates that the initial release of water from the source lake could have been accommodated by a self-enlarging semicircular channel. Subsequent evolution of the discharge and the three-month delay between release of water from the source lake and arrival of that water at the destination lakes indicates that a shallower and broader distributed water system is responsible for the transport of subglacial water in this region. Such a system would be more stable for the given icebedrock geometry and may explain the observations of intermittent flat bright bedrock reflections in radar data acquired upstream from the destination lake in 2000. For the purpose of better understanding the long-term water budget of the Dome C region, an area upstream of Adventure Trench, eleven dated isochronal internal layers within the ice penetrating radar data were tracked. An age-depth relationship, derived from the European ice core through Dome C is used to calculate strain, estimate melt, model ice temperature, and determine absolute basal reflectivity for the entire region which covers over 28,000 square kilometers. The two largest subglacial lakes within the survey, Concordia and Vincennes, are both associated with enhanced basal melting on their upstream shores at rates locally greater than two millimeters per year. Widely distributed melt rates in the major topographic valleys upstream of these lakes are generally less than one millimeter per year throughout the region with slightly higher melts in the basin draining into Vincennes Subglacial Lake. Although published estimates for geothermal flux are capable of explaining the behavior of ice and water in most of the area, an additional source of basal heat is required to explain melt anomalies and subglacial lakes along the Concordia Ridge. Lake Concordia is expected to discharge water on a similar scale and duration as that observed in Adventure Trench, with a repeat cycle of a few hundred years. / text
30

The influence of subglacial hydrology on the flow of West Antarctic ice streams

Baker, Narelle Paula Marie January 2012 (has links)
Subglacial hydrology is known to influence the flow of ice. However, difficulty in accessing the base of large ice sheets has made determining the interaction between ice streams, basal sediment and water difficult to discern. The aim of this thesis is to determine the influence of subglacial hydrology on the flow of the West Antarctic ice streams. This is achieved through development of a numerical flowline model, the Hydrology, Ice and Till (HIT) model. Ice thermodynamics are coupled to a till layer of Coulomb plastic rheology. The porosity of the till changes with basal melt and freeze and can be augmented by water transported through a subglacial conduit system. Water availability strongly affects ice flow, as till porosity influences the till failure strength and thereby the basal resistance of the ice. The model was developed in four stages and a number of sensitivity tests were performed. It was then applied to Kamb Ice Stream (Ice Stream C) and Whillians Ice Stream (Ice Stream B), West Antarctica. Results confirm that ice streams are capable of oscillating between fast and slow velocity states. Cycles are generated at the grounding line of an ice stream and the speed of the transition from slow to fast flow is governed by water availability. The period of oscillation of the cycles for the West Antarctic ice streams was found to be several hundred years, which is in line with observations of stagnation and reactivation of these ice streams. This shows that subglacial hydrology has a role in modulating the flow variability of ice streams and that rather large changes in the flow of the West Antarctic ice streams are likely to occur this century.

Page generated in 0.2873 seconds