• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 8
  • 8
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The impact of subglacial hydrology on force balance for a physically modeled ice stream

Wagman, Benjamin Moore 20 July 2012 (has links)
We use a physical model to investigate how changes in the distribution of subglacial hydrology affect ice motion of Antarctic ice streams. Ice streams are modeled using silicone polymer placed over a thin water layer to mimic ice flow dominated by basal sliding. Dynamic similarity between modeled and natural ice streams is achieved through direct comparison of the model force balance and the observed force balance of Whillans Ice Stream (WIS). The WIS force balance has evolved over time due to increased basal resistance. We test two hypotheses: 1) the subglacial water distribution influences the ice flow speed and thus the force balance and; 2) shear margins are locations where transitions in water layer thickness occur. The velocity and force balance are sensitive to pulsed water discharge events and changes in lubrication associated with sticky spots, and model shear margins tend to overlie water lubrication boundaries. Local changes in basal lubrication near margins (possibly as a result of the presence of sticky spots or subglacial lakes) influences the stability of the margin position and may be responsible for large and rapid shifts in margin location. / text
2

Evolution of Seasonal Variations in Motion of the Kaskawulsh Glacier, Yukon Territory

Herdes, Emilie January 2014 (has links)
Differential GPS data from 2007-2014 are used to assess horizontal and vertical velocity variations of the Kaskawulsh Glacier at interannual and intra-annual timescales. These indicate that an upglacier propagating high velocity event occurs every spring at the onset of melt, and that a downglacier propagating high velocity event occurs every fall or winter after melt has finished. These events suggest that the subglacial drainage system alternates between a distributed system in the winter and channelized system in the summer and fall. In addition, there is a strong negative correlation between summer melt and velocity the following fall and winter, with strong melt years resulting in low velocities. For each additional metre of summer melt, an 8.6% average decrease in velocity is observed on the glacier the following fall-winter. These results suggest that changes in the subglacial drainage system limit the sensitivity of glacier motion to increased meltwater inputs. Glacier motion will likely show a net decrease under a warming climate due to the negative correlation between surface melt rates and ice motion and a decrease in driving stresses as a result of reduced ice thicknesses. In addition, future fall-winter velocity patterns could be accurately predicted from only a month or two of summer melt data, with May-June melt providing the best indication of fall-winter motion. This study also suggests that the common assumption that glaciers are ‘stable’ in the late fall and winter is incorrect.
3

Modelling the hydrology of the Greenland ice sheet

Karatay, Mehmet Rahmi January 2011 (has links)
This thesis aims to better understand the relationships between basal water pressure, friction, and sliding mechanisms at ice sheet scales. In particular, it develops a new subglacial hydrology model (Hydro) to explicitly predict water pressures in response to basal water production and water injection from the surface. Recent research suggests that the Greenland ice sheet (gis) is losing a substantial volume of ice through dynamic thinning. This process must be modelled to accurately assess the contribution of the gis to sea-level rise in future warming scenarios. A key control on dynamic thinning is the presence of water at the ice-bed interface; Zwally et al. (2002) highlight the importance of supraglacial lakes' impact on basal ice dynamics, a process now con rmed by Das et al. (2008) and Shepherd et al. (2009). Many studies focus on the effects of surface meltwater reaching the bed of the gis but the underlying processes are often ignored. Geothermal, strain, and frictional melting, which evolves with basal hydrology, provide the background basal pressure profile that surface meltwater perturbates. Without understanding how these heat terms affect the background profile it is difficult to define basal boundary conditions in models and therefore difficult to model the dynamic response of the gis to surface melting. Hydro tracks subglacial water pressures and the evolution of efficient drainage networks. Coupled with the existing 3D thermomechanical ice sheet model Glimmer, model outputs include effective pressure N and the efficient hydraulic area. Defining frictional heat flux and basal traction as functions of N allow the modelling of seasonal dynamic response to randomly draining supraglacial lakes. Key results are that frictional heat flux, as a function of N, caps potential runaway feedback mechanisms and that water converges in topographic troughs under Greenland's outlet glaciers. This leads to a background profile with low N under outlet glaciers. Therefore, outlet glaciers show a muted dynamic speedup to the seasonal surface signal reaching the bed. Land-terminating ice does not tend to have subglacial troughs and so has higher background N and consequently a larger seasonal response. This, coupled with effects of ice rheology, can explain the hitherto puzzling lack of observed seasonal velocity change on Jakobshavn Isbræ and other outlet glaciers.
4

Ice-stream dynamics : the coupled flow of ice sheets and subglacial meltwater

Kyrke-Smith, Teresa Marie January 2014 (has links)
Ice sheets are among the key controls on global climate and sea level. A detailed understanding of their dynamics is crucial to make accurate predictions of their future mass balance. Ice streams are the dominant negative component in this balance, accounting for up to 90% of the Antarctic ice flux into ice shelves and ultimately into the sea. Despite their importance, our understanding of ice-stream dynamics is far from complete. A range of observations associate ice streams with meltwater. Meltwater lubricates the ice at its bed, allowing it to slide with less internal deformation. It is believed that ice streams may appear due to a localisation feedback between ice flow, basal melting and water pressure in the underlying sediments. This thesis aims to address the instability of ice-stream formation by considering potential feedbacks between the basal boundary and ice flow. Chapter 2 considers ice-flow models, formulating a model that is capable of capturing the leading-order dynamics of both a slow-moving ice sheet and rapidly flowing ice streams. Chapter 3 investigates the consequences of applying different phenomenological sliding laws as the basal boundary condition in this ice-flow model. Chapter 4 presents a model of subglacial water flow below ice sheets, and particularly below ice streams. This provides a more physical representation of processes occurring at the bed. Chapter 5 then investigates the coupled behaviour of the water with the sediment, and Chapter 6 the coupled behaviour of the water with the ice flow. Under some conditions this coupled system gives rise to ice streams due to instability of the internal dynamics.
5

Basal boundary conditions, stability and verification in glaciological numerical models

Helanow, Christian January 2017 (has links)
To increase our understanding of how ice sheets and glaciers interact with the climate system, numerical models have become an indispensable tool. However, the complexity of these systems and the natural limitation in computational power is reflected in the simplifications of the represented processes and the spatial and temporal resolution of the models. Whether the effect of these limitations is acceptable or not, can be assessed by theoretical considerations and by validating the output of the models against real world data. Equally important is to verify if the numerical implementation and computational method accurately represent the mathematical description of the processes intended to be simulated. This thesis concerns a set of numerical models used in the field of glaciology, how these are applied and how they relate to other study areas in the same field. The dynamical flow of glaciers, which can be described by a set of non-linear partial differential equations called the Full Stokes equations, is simulated using the finite element method. To reduce the computational cost of the method significantly, it is common to lower the order of the used elements. This results in a loss of stability of the method, but can be remedied by the use of stabilization methods. By numerically studying different stabilization methods and evaluating their suitability, this work contributes to constraining the values of stabilization parameters to be used in ice sheet simulations. Erroneous choices of parameters can lead to oscillations of surface velocities, which affects the long term behavior of the free-surface ice and as a result can have a negative impact on the accuracy of the simulated mass balance of ice sheets. The amount of basal sliding is an important component that affects the overall dynamics of the ice. A part of this thesis considers different implementations of the basal impenetrability condition that accompanies basal sliding, and shows that methods used in literature can lead to a difference in velocity of 1% to 5% between the considered methods. The subglacial hydrological system directly influences the glacier's ability to slide and therefore affects the velocity distribution of the ice. The topology and dominant mode of the hydrological system on the ice sheet scale is, however, ill constrained. A third contribution of this thesis is, using the theory of R-channels to implement a simple numerical model of subglacial water flow, to show the sensitivity of subglacial channels to transient processes and that this limits their possible extent. This insight adds to a cross-disciplinary discussion between the different sub-fields of theoretical, field and paleo-glaciology regarding the characteristics of ice sheet subglacial hydrological systems. In the study, we conclude by emphasizing areas of importance where the sub-fields have yet to unify: the spatial extent of channelized subglacial drainage, to what degree specific processes are connected to geomorphic activity and the differences in spatial and temporal scales. As a whole, the thesis emphasizes the importance of verification of numerical models but also acknowledges the natural limitations of these to represent complex systems. Focusing on keeping numerical ice sheet and glacier models as transparent as possible will benefit end users and facilitate accurate interpretations of the numerical output so it confidently can be used for scientific purposes. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p> / Greenland Analogue Project
6

Hydrological controls on Greenland Ice Sheet motion

Tedstone, Andrew Jachnik January 2015 (has links)
An improved understanding of the processes controlling the dynamics of the Greenland Ice Sheet is needed to enable more accurate determination of the response of the ice sheet to projected climate change. Meltwater produced on the ice sheet surface can penetrate to the bed and cause ice motion to speed up through enhanced basal sliding. However, the importance of coupled hydro-dynamics both to current ice sheet motion and future stability over the coming century is unclear. This thesis presents observations from the south-west Greenland Ice Sheet which improve our understanding of coupled hydro-dynamics. It commences with an investigation of the response of ice motion to exceptional meltwater forcing during summer 2012. Simultaneous field observations of ice motion (by GPS) and proglacial discharge show that, despite two extreme melt events during July 2012 and summer ice sheet runoff 3.9 s.d. above the 1958– 2011 mean which resulted in faster summer motion, net annual motion was slower than in the average melt year of 2009. This suggests that surface melt-induced acceleration of land-terminating regions of the ice sheet will remain insignificant even under extreme melting scenarios. The thesis then examines spatial variability in ice motion, in relation to an inferred subglacial drainage axis, using GPS and satellite radar observations from a land-terminating margin up to 20 km inland where ice is 800 m thick. Whilst spatial variability in subglacial drainage system configuration is found to control ice motion at short timescales, the proportional contribution of summer motion to annual motion is almost invariant. The structure of the subglacial drainage system does not therefore appear to significantly influence spatial variations in net summer speedup. Lastly, observations are made by applying feature tracking to 30 years of optical satellite imagery in a ~170 by 50 km area along the ice sheet margin (where ice reaches ~850 m thick) to examine whether coupled hydrology-dynamics affects inter-annual ice motion. Hydro-dynamic coupling resulted in net ice motion slowdown during a period of clear climate warming. Further increases in meltwater production may therefore reduce ice sheet motion. The thesis concludes that at land-terminating margins of the Greenland Ice Sheet, (1) larger annual meltwater volumes do not result in faster annual ice motion; (2) the detailed structure of the subglacial drainage network appears unimportant to the role of summer motion in determining annual motion; and (3) atmospheric warming over several decades has been accompanied by a slowdown in ice motion. As such, hydro-dynamic coupling is unlikely to form a significant positive feedback between surface melting and ice motion in response to projected climate warming. The wider relevance of these findings to tidewater systems requires further investigation.
7

Modelling calving and sliding of Svalbard outlet glaciers : Spatio-temporal changes and interactions

Vallot, Dorothée January 2017 (has links)
Future sea level rise associated to global warming is one of the greatest societal and environmental challenges of tomorrow. A large part of the contribution comes from glaciers and ice sheets discharging ice and meltwater into the ocean and the recent worldwide increase is worrying. Future predictions of sea level rise try to encompass the complex processes of ice dynamics through glacier modelling but there are still large uncertainties due to the lack of observations or too coarse parameterisation, particularly for processes occurring at the glacier interfaces with the bed (sliding) and with the ocean (calving). This thesis focuses on modelling these processes from two marine-terminating glaciers in Svalbard, Kronebreen and Tunabreen. By inverting three years of high temporal resolution time-series of surface velocities on Kronebreen, basal properties are retrieved with the ice flow model Elmer/Ice in Paper I. Results suggest that surface melt during the summer greatly influences the dynamics of the following season and that sliding laws for such glaciers should be adapted to local and global processes changing in space and time. The subglacial drainage system, fed by the surface melt, is modelled in Paper II during two melting seasons. Results show different configurations of efficient and inefficient drainage systems between years and the importance of using a sliding law dependent on spatio-temporal changes in effective pressure. The interaction with the ocean is incorporated in Paper III by combining a series of models, including an ice flow model, a plume model and a particle model for discrete calving and compares the output with observations. Results show the importance of glacier geometry, sliding and undercutting on calving rate and location. However, more observations and analytic methods are needed. Time-lapse imagery placed in front of Tunabreen have been deployed and a method of automatic detection for iceberg calving is presented in Paper IV. Results show the influence of the rising plume in calving and the front destabilisation of the local neighbourhood.
8

Hydrology and Bed Topography of the Greenland Ice Sheet : Last known surroundings

Lindbäck, Katrin January 2015 (has links)
The increased temperatures in the Arctic accelerate the loss of land based ice stored in glaciers. The Greenland Ice Sheet is the largest ice mass in the Northern Hemisphere and holds ~10% of all the freshwater on Earth, equivalent to ~7 metres of global sea level rise. A few decades ago, the mass balance of the Greenland Ice Sheet was poorly known and assumed to have little impact on global sea level rise. The development of regional climate models and remote sensing of the ice sheet during the past decade have revealed a significant mass loss. To monitor how the Greenland Ice Sheet will affect sea levels in the future requires understanding the physical processes that govern its mass balance and movement. In the southeastern and central western regions, mass loss is dominated by the dynamic behaviour of ice streams calving into the ocean. Changes in surface mass balance dominate mass loss from the Greenland Ice Sheet in the central northern, southwestern and northeastern regions. Little is known about what the hydrological system looks like beneath the ice sheet; how well the hydrological system is developed decides the water’s impact on ice movement. In this thesis, I have focused on radar sounding measurements to map the subglacial topography in detail for a land-terminating section of the western Greenland Ice Sheet. This knowledge is a critical prerequisite for any subglacial hydrological modelling. Using the high-resolution ice thickness and bed topography data, I have made the following specific studies: First, I have analysed the geological setting and glaciological history of the region by comparing proglacial and subglacial spectral roughness. Second, I have analysed the subglacial water drainage routing and revealed a potential for subglacial water piracy between adjacent subglacial water catchments with changes in the subglacial water pressure regime. Finally, I have looked in more detail into englacial features that are commonly observed in radar sounding data from western Greenland. In all, the thesis highlights the need not only for accurate high-resolution subglacial digital elevation models, but also for regionally optimised interpolation when conducting detailed hydrological studies of the Greenland Ice Sheet. / De ökade temperaturerna i Arktis påskyndar förlusten av landbaserad is lagrad i glaciärer och permafrost. Grönlands inlandsis är den största ismassan på norra halvklotet och lagrar ca 10% av allt sötvatten på jorden, vilket motsvarar ca 7 meter global havsnivåhöjning. För ett par decennier sedan var inlandsisens massbalans dåligt känd och antogs ha liten inverkan på dagens havsnivåhöjning. Utvecklingen av regionala klimatmodeller och satellitbaserad fjärranalys av inlandsisen har under de senaste decenniet påvisat en betydande massförlust. För att förutse vilken inverkan inlandsisen har på framtida havsnivåhöjningar krävs en förståelse för de fysikaliska processerna som styr dess massbalans och isrörelse. I de sydöstra och centrala västra delarna av inlandsisen domineras massförlusten av dynamiska processer i isströmmar som kalvar ut i havet. Massförlusten i de centrala norra, sydvästra och nordöstra delarna domineras av isytans massbalans. Ytterst lite är känt om hur det hydrologiska systemet ser ut under inlandsisen; hur väl det hydrologiska systemet är utvecklat avgör vattnets påverkan på isrörelsen. I denna doktorsavhandling har jag använt markbaserade radarmätningar för att kartlägga den subglaciala topografin för en del av den västra landbaserade inlandsisen. Denna kunskap är en viktig förutsättning för att kunna modellera den subglaciala hydrologin. Med hjälp av rumsligt högupplöst data över istjockleken och bottentopografin har jag gjort följande specifika studier: Först har jag analyserat de geologiska och glaciologiska förhållandena i regionen genom att jämföra proglacial och subglacial spektralanalys av terrängens ytojämnheter. Sedan har jag analyserat den subglaciala vattenavrinningen och påvisat en potential för att avrinningsområdena kan ändras beroende på vattentryckförhållandena på botten. Slutligen har jag tittat mer i detalj på englaciala radarstrukturer som ofta observerats i radardata från västra Grönland. Sammanfattningsvis belyser avhandlingen behovet av inte bara noggranna rumsligt högupplösta subglaciala digitala höjdmodeller, utan även regionalt optimerad interpolering när detaljerade hydrologiska studier ska utföras på Grönlands inlandsis.

Page generated in 0.0841 seconds