• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 11
  • 11
  • 9
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Iterative MPEG Super-Resolution with an Outer Approximation of Framewise Quantization Constraint

SAKANIWA, Kohichi, YAMADA, Isao, ONO, Toshiyuki, HASEGAWA, Hiroshi 01 September 2005 (has links)
No description available.
2

RELAXATION HEURISTICS FOR THE SET COVERING PROBLEM

Umetani, Shunji, Yagiura, Mutsunori, 柳浦, 睦憲 12 1900 (has links) (PDF)
No description available.
3

Stochastic programming approaches to air traffic flow management under the uncertainty of weather

Chang, Yu-Heng 26 October 2010 (has links)
As air traffic congestion grows, air traffic flow management (ATFM) is becoming a great concern. ATFM deals with air traffic and the efficient utilization of the airport and airspace. Air traffic efficiency is heavily influenced by unanticipated factors, or uncertainties, which can come from several sources such as mechanical breakdown; however, weather is the main unavoidable cause of uncertainty. Because weather is unpredictable, it poses a critical challenge for ATFM in current airport and airspace operations. Convective weather results in congestion at airports as well as in airspace sectors. During times of congestion, the decision as how and when to send aircraft toward an airspace sector in the presence of weather is difficult. To approach this problem, we first propose a two-stage stochastic integer program by emphasizing a given single sector. By considering ground delay, cancellation, and cruise speed for each flight on the ground in the first stage, as well as air holding and diversion recourse actions for each flight in the air in the second stage, our model determines how aircraft are sent toward a sector under the uncertainty of weather. However, due to the large number of weather scenarios, the model is intractable in practice. To overcome the intractability, we suggest a rolling horizon method to solve the problem to near optimal. Lagrangian relaxation and subgradient method are used to justify the rolling horizon method. Since the rolling horizon method can be solved in real time, we can apply it to actual aircraft schedules to reduce the costs incurred on the ground as well as in airspace. We then extend our two-stage model to a multistage stochastic program, which increases the number of possible weather realizations and results a more efficient schedule in terms of costs. The rolling horizon method as well as Lagrangian relaxation and subgradient method are applied to this multistage model. An overall comparison among the previously described methodologies are presented.
4

Método subgradiente incremental para otimização convexa não diferenciável / Incremental subgradient method for nondifferentiable convex optimization

Adona, Vando Antônio 18 December 2014 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-26T12:20:46Z No. of bitstreams: 2 Dissertação - Vando Antônio Adona - 2014.pdf: 1128475 bytes, checksum: a2d00afcaef383726904cf6e6fd3527d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-27T10:48:07Z (GMT) No. of bitstreams: 2 Dissertação - Vando Antônio Adona - 2014.pdf: 1128475 bytes, checksum: a2d00afcaef383726904cf6e6fd3527d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-03-27T10:48:07Z (GMT). No. of bitstreams: 2 Dissertação - Vando Antônio Adona - 2014.pdf: 1128475 bytes, checksum: a2d00afcaef383726904cf6e6fd3527d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-12-18 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / We consider an optimization problem for which the objective function is the sum of convex functions, not necessarily differentiable. We study a subgradient method that executes the iterations incrementally selecting each component function sequentially and processing the subgradient iteration individually. We analyze different alternatives for choosing the step length, highlighting the convergence properties for each case. We also analyze the incremental model in other methods, considering proximal iteration and combinations of subgradient and proximal iterations. This incremental approach has been very successful when the number of component functions is large. / Consideramos um problema de otimização cuja função objetivo consiste na soma de funções convexas, não necessariamente diferenciáveis. Estudamos um método subgradiente que executa a iteração de forma incremental, selecionando cada função componente de maneira sequencial e processando a iteração subgradiente individualmente. Analisamos diferentes alternativas para a escolha do comprimento de passo, destacando as propriedades de convergência para cada caso. Abordamos também o modelo incremental em outros métodos, considerando iteração proximal e combinações de iterações subgradiente e proximal. Esta abordagem incremental tem sido muito bem sucedida quando o número de funções componentes é grande.
5

Algoritmo do volume e otimização não diferenciável / \"Volume Algorithm and Nondifferentiable Optimization\"

Fukuda, Ellen Hidemi 01 March 2007 (has links)
Uma maneira de resolver problemas de programação linear de grande escala é explorar a relaxação lagrangeana das restrições \"difíceis\'\' e utilizar métodos de subgradientes. Populares por fornecerem rapidamente boas aproximações de soluções duais, eles não produzem diretamente as soluções primais. Para obtê-las com custo computacional adequado, pode-se construir seqüências ergódicas ou utilizar uma técnica proposta recentemente, denominada algoritmo do volume. As propriedades teóricas de convergência não foram bem estabelecidas nesse algoritmo, mas pequenas modificações permitem a demonstração da convergência dual. Destacam-se como adaptações o algoritmo do volume revisado, um método de feixes específico, e o algoritmo do volume incorporado ao método de variação do alvo. Este trabalho foi baseado no estudo desses algoritmos e de todos os conceitos envolvidos, em especial, análise convexa e otimização não diferenciável. Estudamos as principais diferenças teóricas desses métodos e realizamos comparações numéricas com problemas lineares e lineares inteiros, em particular, o corte máximo em grafos. / One way to solve large-scale linear programming problems is to exploit the Lagrangian relaxation of the difficult constraints and use subgradient methods. Such methods are popular as they give good approximations of dual solutions. Unfortunately, they do not directly yield primal solutions. Two alternatives to obtain primal solutions under reasonable computational cost are the construction of ergodic sequences and the use of the recently developed volume algorithm. While the convergence of ergodic sequences is well understood, the convergence properties of the volume algorithm is not well established in the original paper. This lead to some modifications of the original method to ease the proof of dual convergence. Three alternatives are the revised volume algorithm, a special case of the bundle method, and the volume algorithm incorporated by the variable target value method. The aim of this work is to study such algorithms and all related concepts, especially convex analysis and nondifferentiable optimization. We analysed the main theoretical differences among the methods and performed numerical experiments with linear and integer problems, in particular, the maximum cut problem on graphs.
6

Generalized unit commitment by the radar multiplier method

Beltran Royo, César 09 July 2001 (has links)
This operations research thesis should be situated in the field of the power generation industry. The general objective of this work is to efficiently solve the Generalized Unit Commitment (GUC) problem by means of specialized software. The GUC problem generalizes the Unit Commitment (UC) problem by simultane-ously solving the associated Optimal Power Flow (OPF) problem. There are many approaches to solve the UC and OPF problems separately, but approaches to solve them jointly, i.e. to solve the GUC problem, are quite scarce. One of these GUC solving approaches is due to professors Batut and Renaud, whose methodology has been taken as a starting point for the methodology presented herein.This thesis report is structured as follows. Chapter 1 describes the state of the art of the UC and GUC problems. The formulation of the classical short-term power planning problems related to the GUC problem, namely the economic dispatching problem, the OPF problem, and the UC problem, are reviewed. Special attention is paid to the UC literature and to the traditional methods for solving the UC problem. In chapter 2 we extend the OPF model developed by professors Heredia and Nabona to obtain our GUC model. The variables used and the modelling of the thermal, hydraulic and transmission systems are introduced, as is the objective function. Chapter 3 deals with the Variable Duplication (VD) method, which is used to decompose the GUC problem as an alternative to the Classical Lagrangian Relaxation (CLR) method. Furthermore, in chapter 3 dual bounds provided by the VDmethod or by the CLR methods are theoretically compared.Throughout chapters 4, 5, and 6 our solution methodology, the Radar Multiplier (RM) method, is designed and tested. Three independent matters are studied: first, the auxiliary problem principle method, used by Batut and Renaud to treat the inseparable augmented Lagrangian, is compared with the block coordinate descent method from both theoretical and practical points of view. Second, the Radar Sub- gradient (RS) method, a new Lagrange multiplier updating method, is proposed and computationally compared with the classical subgradient method. And third, we study the local character of the optimizers computed by the Augmented Lagrangian Relaxation (ALR) method when solving the GUC problem. A heuristic to improve the local ALR optimizers is designed and tested.Chapter 7 is devoted to our computational implementation of the RM method, the MACH code. First, the design of MACH is reviewed brie y and then its performance is tested by solving real-life large-scale UC and GUC instances. Solutions computed using our VD formulation of the GUC problem are partially primal feasible since they do not necessarily fulfill the spinning reserve constraints. In chapter 8 we study how to modify this GUC formulation with the aim of obtaining full primal feasible solutions. A successful test based on a simple UC problem is reported. The conclusions, contributions of the thesis, and proposed further research can be found in chapter 9.
7

Integração de heurísticas lagrangeanas com algoritmos exatos para a otimização de particionamento de conjuntos / Integration of Lagrangean heuristics with exact algorithms to otimization of the set partitioning problem

Alves, Alexsandro de Oliveira January 2007 (has links)
ALVES, Alexsandro de Oliveira. Integração de heurísticas lagrangeanas com algoritmos exatos para a otimização de particionamento de conjuntos. 2007. 49 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências, Departamento de Computação, Fortaleza-CE, 2007. / Submitted by guaracy araujo (guaraa3355@gmail.com) on 2016-05-20T18:05:04Z No. of bitstreams: 1 2007_dis_aoalves.pdf: 434539 bytes, checksum: d7550e0ddf22c4c083e44734e59375f7 (MD5) / Approved for entry into archive by guaracy araujo (guaraa3355@gmail.com) on 2016-05-20T18:08:40Z (GMT) No. of bitstreams: 1 2007_dis_aoalves.pdf: 434539 bytes, checksum: d7550e0ddf22c4c083e44734e59375f7 (MD5) / Made available in DSpace on 2016-05-20T18:08:40Z (GMT). No. of bitstreams: 1 2007_dis_aoalves.pdf: 434539 bytes, checksum: d7550e0ddf22c4c083e44734e59375f7 (MD5) Previous issue date: 2007 / In this work we evaluate both exact and heuristic methods for the set partitioning problem (SPP). These heuristics are based on greedy algorithms, tabu search and subgradient optimization. Computational experiments performed on benchmark instances of the problem indicate that our heuristics are competitive with existing ones from the literature in obtaining both lower and upper bounds of good quality in reasonable execution time. We use a Branch and Bound algorithm that allows to prove optimality of solutions obtained by our heuristics for a large set of benchmark instances of the SPP. Thus, we show that our heuristics are efficient in obtaining feasible solutions of good quality for this problem. / Neste trabalho avaliamos métodos heurísticos e exatos para o Problema de Particionamento de Conjuntos (PPC). Realizamos testes computacionais com heurísticas lagrangeanas baseadas em algoritmos gulosos, busca tabu e método de otimização pelo subgradiente. Os resultados obtidos, comparados com os da literatura, comprovam a eficiência de nossas heurísticas na obtenção de limites inferiores e superiores de boa qualidade, em tempo computacional razoável, para instâncias da literatura. Utilizamos um esquema de Branch and Bound para tentar resolver instâncias do PPC à otimalidade e para comprovar a qualidade dos resultados alcançados por nossas heurísticas.
8

IntegraÃÃo de heurÃsticas lagrangeanas com algoritmos exatos para a otimizaÃÃo de particionamento de conjuntos / Integration of Lagrangean heuristics with exact algorithms to otimization of the set partitioning problem

Alexsandro de Oliveira Alves 31 August 2007 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Neste trabalho avaliamos mÃtodos heurÃsticos e exatos para o Problema de Particionamento de Conjuntos (PPC). Realizamos testes computacionais com heurÃsticas lagrangeanas baseadas em algoritmos gulosos, busca tabu e mÃtodo de otimizaÃÃo pelo subgradiente. Os resultados obtidos, comparados com os da literatura, comprovam a eficiÃncia de nossas heurÃsticas na obtenÃÃo de limites inferiores e superiores de boa qualidade, em tempo computacional razoÃvel, para instÃncias da literatura. Utilizamos um esquema de Branch and Bound para tentar resolver instÃncias do PPC ÃÂotimalidade e para comprovar a qualidade dos resultados alcanÃados por nossas heurÃsticas. / In this work we evaluate both exact and heuristic methods for the set partitioning problem (SPP). These heuristics are based on greedy algorithms, tabu search and subgradient optimization. Computational experiments performed on benchmark instances of the problem indicate that our heuristics are competitive with existing ones from the literature in obtaining both lower and upper bounds of good quality in reasonable execution time. We use a Branch and Bound algorithm that allows to prove optimality of solutions obtained by our heuristics for a large set of benchmark instances of the SPP. Thus, we show that our heuristics are efficient in obtaining feasible solutions of good quality for this problem.
9

Algoritmo do volume e otimização não diferenciável / \"Volume Algorithm and Nondifferentiable Optimization\"

Ellen Hidemi Fukuda 01 March 2007 (has links)
Uma maneira de resolver problemas de programação linear de grande escala é explorar a relaxação lagrangeana das restrições \"difíceis\'\' e utilizar métodos de subgradientes. Populares por fornecerem rapidamente boas aproximações de soluções duais, eles não produzem diretamente as soluções primais. Para obtê-las com custo computacional adequado, pode-se construir seqüências ergódicas ou utilizar uma técnica proposta recentemente, denominada algoritmo do volume. As propriedades teóricas de convergência não foram bem estabelecidas nesse algoritmo, mas pequenas modificações permitem a demonstração da convergência dual. Destacam-se como adaptações o algoritmo do volume revisado, um método de feixes específico, e o algoritmo do volume incorporado ao método de variação do alvo. Este trabalho foi baseado no estudo desses algoritmos e de todos os conceitos envolvidos, em especial, análise convexa e otimização não diferenciável. Estudamos as principais diferenças teóricas desses métodos e realizamos comparações numéricas com problemas lineares e lineares inteiros, em particular, o corte máximo em grafos. / One way to solve large-scale linear programming problems is to exploit the Lagrangian relaxation of the difficult constraints and use subgradient methods. Such methods are popular as they give good approximations of dual solutions. Unfortunately, they do not directly yield primal solutions. Two alternatives to obtain primal solutions under reasonable computational cost are the construction of ergodic sequences and the use of the recently developed volume algorithm. While the convergence of ergodic sequences is well understood, the convergence properties of the volume algorithm is not well established in the original paper. This lead to some modifications of the original method to ease the proof of dual convergence. Three alternatives are the revised volume algorithm, a special case of the bundle method, and the volume algorithm incorporated by the variable target value method. The aim of this work is to study such algorithms and all related concepts, especially convex analysis and nondifferentiable optimization. We analysed the main theoretical differences among the methods and performed numerical experiments with linear and integer problems, in particular, the maximum cut problem on graphs.
10

Lagrangian-based methods for single and multi-layer multicommodity capacitated network design

Akhavan Kazemzadeh, Mohammad Rahim 09 1900 (has links)
No description available.

Page generated in 0.0812 seconds