• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 53
  • 32
  • 18
  • 17
  • 17
  • 16
  • 15
  • 11
  • 10
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Finite Element Method Over A Simple Stabilizing Grid Applied To Fluid Flow Problems

Aydin, Selcuk Han 01 February 2008 (has links) (PDF)
We consider the stabilized finite element method for solving the incompressible Navier-Stokes equations and the magnetohydrodynamic (MHD) equations in two dimensions. The well-known instabilities arising from the application of standard Galerkin finite element method are eliminated by using the stabilizing subgrid method (SSM), the streamline upwind Petrov-Galerkin (SUPG) method, and the two-level finite element method (TLFEM). The domain is discretized into a set of regular triangular elements. In SSM, the finite-dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual-free bubble functions. To find the bubble part of the solution, a two-level finite element method with a stabilizing subgrid of a single node is described and its applications to the Navier-Stokes equations and MHD equations are displayed. This constitutes the main original contribution of this thesis. Numerical approximations employing the proposed algorithms are presented for some benchmark problems. The results show that the proper choice of the subgrid node is crucial to get stable and accurate numerical approximations consistent with the physical configuration of the problem at a cheap computational cost. The stabilized finite element method of SUPG type is applied to the unsteady Navier-Stokes equations together with a finite element discretization in the time domain. Thus, oscillations in the solution and the need of very small time increment are avoided in obtaining stable solutions.
32

Optical flow estimation with subgrid model for study of turbulent flow

Cassisa, Cyril 07 April 2011 (has links) (PDF)
The objective of this thesis is to study the evolution of scalar field carried by a flow from a temporal image sequence. The estimation of the velocity field of turbulent flow is of major importance for understanding the physical phenomenon. Up to now the problem of turbulence is generally ignored in the flow equation of existing methods. An information given by image is discrete at pixel size. Depending on the turbulent rate of the flow, pixel and time resolutions may become too large to neglect the effect of sub-pixel small-scales on the pixel velocity field. For this, we propose a flow equation defined by a filtered concentration transport equation where a classic turbulent sub-grid eddy viscosity model is introduced in order to account for this effect. To formulate the problem, we use a Markovian approach. An unwarping multiresolution by pyramidal decomposition is proposed which reduces the number of operations on images. The optimization coupled with a multigrid approach allows to estimate the optimal 2D real velocity field. Our approach is tested on synthetic andreal image sequences (PIV laboratory experiment and remote sensing data of dust storm event) with high Reynolds number. Comparisons with existing approaches are very promising.
33

Development of subgrid models for a periodic circulating fluidized bed of binary mixture of particles / Développement de modèle de sous-maille pour la simulation numérique d'un écoulement polydisperse réactif

Chevrier, Solène 11 July 2017 (has links)
Des études numériques ont montré que la taille de la cellule de maillage peut avoir un effet drastique sur la modélisation du lit fluidisé circulant avec des petites particules. En effet, la taille de la cellule doit être de l’ordre de quelques diamètres de particules pour prédire avec précision le comportement dynamique d’un lit fluidisé. En conséquence, les simulations numériques d’ Euler-Euler des processus industriels sont généralement effectuées avec des grilles trop grossières pour permettre la prédiction des effets de ségrégation locale. La modélisation appropriée, qui prend en compte l’influence des structures non résolues, a déjà été proposée pour les simulations monodispersés. Dans ce travail, l’influence des structures non résolues sur un mélange binaire de particules est analysée et on propose des modèles pour tenir compte de cet effet dans des simulations de lit fluidisé polydispersés. Pour atteindre cet objectif, des simulations Euler-Euler de références sont réalisées avec un raffinement du maillage aboutissant à une solution indépendante de la taille de la cellule. Ce type de simulation numérique est très coûteux et se limite à des configurations très simples. Dans ce travail, la configuration se consiste en un lit circulant périodique 3D, qui représente la région établie d'un lit circulant. Parallèlement, une approche filtrée est développée où les termes inconnus, appelés contributions de sous-maille, doivent être modélisés. Les filtres spatiaux peuvent être appliqués aux résultats de simulation de référence afin de mesurer chaque contribution de sous-maille apparaissant dans l’approche théorique filtrée. Une analyse est réalisée afin de comprendre et de modéliser l’effet de la contribution des termes de sous-maille. L’opération de filtrage fait apparaître de nouveaux termes, les termes de sous-maille. Un terme filtré est la somme d’un terme résolu, obtenus à partir des champs filtrés, et d’ un terme de sous-maille. L’analyse de l’équation filtrée de quantité de mouvement montre que les contributions résolues de la traînée des particules fluides et la collision entre particules surestiment les effets de transferts de quantité de mouvement filtrés. L’analyse de l’équation filtrée de l’énergie cinétique des particules montre que la production résolue par le cisaillement moyen et par le mouvement relatif moyen des particules sous-estime contribution filtrée. Des modèles fonctionnels sont proposés pour les contributions de sous-maille de la traînée et des collisions inter-particule. / Detailed sensitivity numerical studies have shown that the mesh cell-size may have a drastic effect on the modelling of circulating fluidized bed with small particles. Typically, the cell-size must be of the order of few particle diameters to predict accurately the dynamical behaviour of a fluidized bed. Hence, the Euler-Euler numerical simulations of industrial processes are generally performed with grids too coarse to allow the prediction of the local segregation effects. Appropriate modelling, which takes into account the influence of unresolved structures, have been already proposed for monodisperse simulations. In this work, the influence of unresolved structures on a binary mixture of particles is investigated and models are proposed to account for those effect on bidisperse simulations of bidisperse gas-solid fluidized bed. To achieve this goal, Euler-Euler reference simulations are performed with grid refinement up to reach a mesh independent solution. Such kind of numerical simulation is very expensive and is restricted to very simple configurations. In this work, the configuration consists of a 3D periodical circulating fluidized bed, that could represent the established zone of an industrial circulating fluidized bed. In parallel, a filtered approach is developed where the unknown terms, called sub-grid contributions, appear. They correspond to the difference between filtered terms, which are calculated with the reference results then filtered, and resolved contributions, calculated with the filtered fields. Then spatial filters can be applied to reference simulation results to measure each sub-grid contribution appearing in the theoretical filtered approach. A budget analysis is carried out to understand and model the sub-grid term. The analysis of the filtered momentum equation shows that the resolved fluid-particle drag and inter-particle collision are overestimating the momentum transfer effects. The analysis of the budget of the filtered random kinetic energy shows that the resolved production by the mean shear and by the mean particle relative motion are underestimating the filtered ones. Functional models are proposed for the subgrid contributions of the drag and the inter-particle collision.
34

Simulação numérica de escoamentos com troca de calor no interior de tubos com nervuras periódicas / Numerical Simulation of Flow with Heat Transfer in Periodic Rib Roughened Tubes

Ortiz, Carlos Enrique Pico 25 January 2002 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / With the aim of develop a computational tool for thermodynamic optimization of heat exchangers, a computational code was implemented to solve the Navier-Stokes equations in an axisymmetric domain using the finite volume method and central differencing with Runge-Kutta explicit temporal advance and pressure-velocity coupling of fractional step type. This work presents results of the numeric simulation of the fully developed flow with heat transfer in a tube of circular section with ribs or obstacles, periodically spaced in the flow direction. The simulations were carried out in two regimes, laminar and turbulent, out of the completely rough region, and in four different geometries. In the cases with the high Reynolds number, the Smagorinsky subgrid model with damping function was used to include the effects of the quasi-two-dimensional scales not solved. In both cases, the primitive variables were decomposed to use periodic boundary conditions in the flow direction and non-slip boundary conditions in the walls. The results obtained in laminar regime are satisfactory. In the turbulent regime the results show the deficiency of the Smagorinsky subgrid model, when it is applied in two-dimensional domains. / Com o objetivo de desenvolver uma ferramenta computacional que permita a otimização termodinâmica de trocadores de calor, foi implementado um código computacional para resolver as equações de Navier-Stokes num domínio axissimétrico, usando o método dos volumes finitos e diferenças centradas, com esquema temporal explícito de Runge Kutta e acoplamento pressão-velocidade do tipo passo fracionário. Neste trabalho são apresentados resultados da simulação numérica de escoamentos completamente desenvolvidos e com troca de calor, em um tubo de seção circular com nervuras ou obstáculos periodicamente espaçados na direção do escoamento. As simulações foram feitas em dois regimes, laminar e turbulento, fora da região completamente rugosa, e para quatro geometrias diferentes. Nos casos com números de Reynolds mais elevados, foi empregado o modelo de turbulência sub-malha de Smagorinsky com função de amortecimento, para incluir os efeitos das escalas quase bidimensionais não-resolvidas. Em ambos os casos, as variáveis primitivas foram decompostas para empregar condições de contorno periódicas na direção do escoamento e de não-escorregamento nas paredes. Os resultados obtidos em regime laminar são satisfatórios e, em regime turbulento, mostram a deficiência do modelo sub-malha de Smagorinsky, quando aplicado em domínios bidimensionais. / Mestre em Engenharia Mecânica
35

Optical flow estimation with subgrid model for study of turbulent flow / Estimation du champ de vitesse d'un écoulement turbulent

Cassisa, Cyril 07 April 2011 (has links)
L’objectif de cette thèse est l’étude de l’évolution de champ scalaire transporté par un écoulement à partir d’une séquence d’images temporelles. L’estimation du champ de vitesse d’un écoulement turbulent est d’une importance majeure pour mieux comprendre le phénomène physique. Jusqu’à présent, le problème de la turbulence est généralement ignoré dans l’équation de mouvement des méthodes existantes. Les images contiennent une information discrète correspondant à la taille du pixel. Selon le niveau de turbulence de l’écoulement, les résolutions des pixels et du temps peuvent devenir trop grandes pour négliger l’effet des petites échelles (sous-pixel) sur le champ de vitesse. Nous proposons pour cela, une équation de mouvement définie par l’équation de transport de concentration filtrée pour laquelle un modèle classique de viscosité turbulente sous-maille est introduit afin de tenir compte de cet effet. Nous utilisons pour formuler le problème, une approche Markovienne. Une méthode de multirésolution par décomposition pyramidale, sans transformation d’image intermédiaire au cours du processus, est proposée. Cela permet de diminuer le nombre d’opérations sur les images. La méthode d’optimisation utilisée, couplée avec une approche multigrille, permet d’obtenir le champ de vitesse réel optimal. Notre approche est testée sur des séquences d’images synthétiques et réelles (expérience PIV et tempête de sable à partir d’image de télédétection) avec des nombres de Reynolds élevés. Les comparaisons avec des approches existantes sont très prometteuses. / The objective of this thesis is to study the evolution of scalar field carried by a flow from a temporal image sequence. The estimation of the velocity field of turbulent flow is of major importance for understanding the physical phenomenon. Up to now the problem of turbulence is generally ignored in the flow equation of existing methods. An information given by image is discrete at pixel size. Depending on the turbulent rate of the flow, pixel and time resolutions may become too large to neglect the effect of sub-pixel small-scales on the pixel velocity field. For this, we propose a flow equation defined by a filtered concentration transport equation where a classic turbulent sub-grid eddy viscosity model is introduced in order to account for this effect. To formulate the problem, we use a Markovian approach. An unwarping multiresolution by pyramidal decomposition is proposed which reduces the number of operations on images. The optimization coupled with a multigrid approach allows to estimate the optimal 2D real velocity field. Our approach is tested on synthetic andreal image sequences (PIV laboratory experiment and remote sensing data of dust storm event) with high Reynolds number. Comparisons with existing approaches are very promising.
36

Une approche multifractale pour la modélisation du micro-mélange à grand nombre de Schmidt / A multifractal approach for modeling turbulent micro-mixing at high Schmidt numbers

Vahe, Jonathan 06 October 2014 (has links)
Cette thèse est consacrée à la simulation du mélange de scalaires passifs à grand nombre de Schmidt (faible diffusion), au moyen d’un modèle de sous-maille structurel pour la Simulation aux Grandes Echelles (LES pour Large Eddy Simulation) reposant sur le caractère multifractal des champs de gradient en turbulence. L’analyse multifractale des champs de dissipation scalaire permet, à l’aide d’une description statistique des singularités, de prendre en compte l’intermittence inhérente à ces champs. Des simulations numériques directes du mélange à différents nombres de Schmidt supérieurs à l’unité sont mises en oeuvre. Une analyse multifractale au moyen de différentes méthodes est menée afin d’obtenir les spectres de singularités de la dissipation scalaire. Une implantation du modèle de sous-maille multifractal pour la vitesse, proposé par Burton et al., est d’abord réalisée dans le code volumes finis YALES2.Une modification du modèle équivalent pour les scalaires, reposant sur une cascade multiplicative pour reconstruire la dissipation scalaire de sous-maille, est proposée afin de prendre en compte le micro-mélange à grand nombre de Schmidt. Ce modèle de sous-maille est alors évalué au moyen de tests a priori. / This thesis is focused on the simulation of turbulent mixing of passive scalars at high Schmidt numbers (low diffusivity). The modeling work is based on a structural subgrid-scale model for Large Eddy Simulation relying on the multifractal nature of gradient fields in turbulence.The multifractal formalism provides a mean to handle the characteristic intermittency of scalar dissipation fields through a statistical description of their singularities. Direct Numerical Simulations of mixing at several Schmidt numbers above unity are run with a dedicated code. Different methods are used to perform a multifractal analysis of scalar dissipation. The multifractal subgrid-scale model of Burton et al. for velocity is implemented in the Finite Volume code YALES2. A modification of the equivalent multifractal model for scalars is proposed to take into account micro-mixing at high Schmidt numbers. The model shows satisfactory results when tested a priori against direct simulations.
37

Explicit algebraic subgrid-scale stress and passive scalar flux modeling in large eddy simulation

Rasam, Amin January 2011 (has links)
The present thesis deals with a number of challenges in the field of large eddy simulation (LES). These include the performance of subgrid-scale (SGS) models at fairly high Reynolds numbers and coarse resolutions, passive scalar and stochastic modeling in LES. The fully-developed turbulent channel flow is used as the test case for these investigations. The advantage of this particular test case is that highly accurate pseudo-spectral methods can be used for the discretization of the governing equations. In the absence of discretization errors, a better understanding of the subgrid-scale model performance can be achieved. Moreover, the turbulent channel flow is a challenging test case for LES, since it shares some of the common important features of all wall-bounded turbulent flows. Most commonly used eddy-viscosity-type models are suitable for moderately to highly-resolved LES cases, where the unresolved scales are approximately isotropic. However, this makes simulations of high Reynolds number wall-bounded flows computationally expensive. In contrast, explicit algebraic (EA) model takes into account the anisotropy of SGS motions and performs well in predicting the flow statistics in coarse-grid LES cases. Therefore, LES of high Reynolds number wall-bounded flows can be performed at much lower number of grid points in comparison with other models. A demonstration of the resolution requirements for the EA model in comparison with the dynamic Smagorinsky and its high-pass filtered version for a fairly high Reynolds number is given in this thesis. One of the shortcomings of the commonly used eddy diffusivity model arises from its assumption of alignment of the SGS scalar flux vector with the resolved scalar gradients. However, better SGS scalar flux models that overcome this issue are very few. Using the same methodology that led to the EA SGS stress model, a new explicit algebraic SGS scalar flux model is developed, which allows the SGS scalar fluxes to be partially independent of the resolved scalar gradient. The model predictions are verified and found to improve the scalar statistics in comparison with the eddy diffusivity model. The intermittent nature of energy transfer between the large and small scales of turbulence is often not fully taken into account in the formulation of SGS models both for velocity and scalar. Using the Langevin stochastic differential equation, the EA models are extended to incorporate random variations in their predictions which lead to a reasonable amount of backscatter of energy from the SGS to the resolved scales. The stochastic EA models improve the predictions of the SGS dissipation by decreasing its length scale and improving the shape of its probability density function. / QC 20110615
38

Um código LES de alta ordem para simulação de escoamentos turbulentos com desenvolvimento espacial / A high-order LES code for spatially developing turbulent flow simulations

Patrícia Sartori 05 August 2016 (has links)
A metodologia LES (Large Eddy Simulation) é uma alternativa viável para a solução numérica de escoamentos de interesse prático em virtude da limitação computacional imposta pela resolução direta de todas as escalas presentes em escoamentos turbulentos. Entretanto, a compreensão detalhada do fenômeno da turbulência é ainda uma tarefa desafiadora em consequência do seu comportamento não linear e alta sensibilidade às condições iniciais e de contorno. Dessa forma, o sucesso de simulações LES está associado à utilização de um código computacional eficiente, com modelagem submalha que represente corretamente a dinâmica do escoamento, juntamente com a especificação de condições iniciais turbulentas fisicamente consistentes. Nesse contexto, o presente trabalho tem como objetivo o desenvolvimento de um código LES de alta ordem aliado a um método de geração de perturbações para o estudo de escoamentos turbulentos em camada limite sobre superfície plana. Foi adotada a formulação vorticidadevelocidade. A metodologia numérica baseia-se no método de diferenças finitas em malhas colocalizadas, onde as derivadas nas direções longitudinal e normal ao escoamento são aproximadas usando diferenças compactas de alta ordem. Esse estudo assume periodicidade na direção transversal do escoamento e então um método espectral é adotado nessa direção. A integração temporal é feita através do método Runge-Kutta de 4a ordem e a solução da equação de Poisson se dá por meio de um método multigrid. Para a modelagem submalha é adotado o modelo WALE (Wall-Adapting Local Eddy-viscosity). O método RFG (Random Flow Generation) foi responsável pela geração das flutuações de velocidade. Os resultados obtidos mostraram-se em boa concordância com os dados DNS (Direct Numerical Simulation) e LES presentes na literatura. / LES methodology is a viable alternative for the numerical solution of practical interest flows due to the computational limitations imposed by the direct resolution of all scales presented in turbulent flow. However, the detailed understanding of the turbulence phenomenon is still a challenging task as a result of its non-linear behavior and high sensitivity to initial and boundary conditions. Thus, the success of LES simulations is associated with the use of an efficient computational code, wherein the subgrid scale modeling accurately represents the flow dynamics, together with the specification of realistic inicial boundary conditions. In this context, this study aims to develop a high-order LES code combined with a method for generating velocity fluctuations to compute turbulent boundary layer flows over a flat plate. The vorticity-velocity formulation was adopted. The numerical scheme is based on the finite difference method in collocated grid, where the derivatives in the streamwise and wall-normal are approximated using high order compact finite difference schemes. We also assume periodicity in spanwise direction therefore it is adopted a spectral method in this direction. The method chosen for the temporal evolution is the 4th order Runge-Kutta method and the solution of Poisson equation solution is accessed via a multigrid algorithm. For subgrid modelling it is adopted the Wall-Adapting Local Eddy-viscosity (WALE) model. The RFG (Random Flow Generation) method was responsible for the generation of unsteady turbulent velocity signal. The results obtained were in good agreement with DNS (Direct Numerical Simulation) and LES from the literature.
39

Um código LES de alta ordem para simulação de escoamentos turbulentos com desenvolvimento espacial / A high-order LES code for spatially developing turbulent flow simulations

Sartori, Patrícia 05 August 2016 (has links)
A metodologia LES (Large Eddy Simulation) é uma alternativa viável para a solução numérica de escoamentos de interesse prático em virtude da limitação computacional imposta pela resolução direta de todas as escalas presentes em escoamentos turbulentos. Entretanto, a compreensão detalhada do fenômeno da turbulência é ainda uma tarefa desafiadora em consequência do seu comportamento não linear e alta sensibilidade às condições iniciais e de contorno. Dessa forma, o sucesso de simulações LES está associado à utilização de um código computacional eficiente, com modelagem submalha que represente corretamente a dinâmica do escoamento, juntamente com a especificação de condições iniciais turbulentas fisicamente consistentes. Nesse contexto, o presente trabalho tem como objetivo o desenvolvimento de um código LES de alta ordem aliado a um método de geração de perturbações para o estudo de escoamentos turbulentos em camada limite sobre superfície plana. Foi adotada a formulação vorticidadevelocidade. A metodologia numérica baseia-se no método de diferenças finitas em malhas colocalizadas, onde as derivadas nas direções longitudinal e normal ao escoamento são aproximadas usando diferenças compactas de alta ordem. Esse estudo assume periodicidade na direção transversal do escoamento e então um método espectral é adotado nessa direção. A integração temporal é feita através do método Runge-Kutta de 4a ordem e a solução da equação de Poisson se dá por meio de um método multigrid. Para a modelagem submalha é adotado o modelo WALE (Wall-Adapting Local Eddy-viscosity). O método RFG (Random Flow Generation) foi responsável pela geração das flutuações de velocidade. Os resultados obtidos mostraram-se em boa concordância com os dados DNS (Direct Numerical Simulation) e LES presentes na literatura. / LES methodology is a viable alternative for the numerical solution of practical interest flows due to the computational limitations imposed by the direct resolution of all scales presented in turbulent flow. However, the detailed understanding of the turbulence phenomenon is still a challenging task as a result of its non-linear behavior and high sensitivity to initial and boundary conditions. Thus, the success of LES simulations is associated with the use of an efficient computational code, wherein the subgrid scale modeling accurately represents the flow dynamics, together with the specification of realistic inicial boundary conditions. In this context, this study aims to develop a high-order LES code combined with a method for generating velocity fluctuations to compute turbulent boundary layer flows over a flat plate. The vorticity-velocity formulation was adopted. The numerical scheme is based on the finite difference method in collocated grid, where the derivatives in the streamwise and wall-normal are approximated using high order compact finite difference schemes. We also assume periodicity in spanwise direction therefore it is adopted a spectral method in this direction. The method chosen for the temporal evolution is the 4th order Runge-Kutta method and the solution of Poisson equation solution is accessed via a multigrid algorithm. For subgrid modelling it is adopted the Wall-Adapting Local Eddy-viscosity (WALE) model. The RFG (Random Flow Generation) method was responsible for the generation of unsteady turbulent velocity signal. The results obtained were in good agreement with DNS (Direct Numerical Simulation) and LES from the literature.
40

Dynamical Subgrid-scale Parameterizations for Quasigeostrophic Flows using Direct Numerical Simulations

Zidikheri, Meelis Juma, m.zidikheri@bom.gov.au January 2008 (has links)
In this thesis, parameterizations of non-linear interactions in quasigeostrophic (QG) flows for severely truncated models (STM) and Large Eddy Simulations (LES) are studied. Firstly, using Direct Numerical Simulations (DNS), atmospheric barotropic flows over topography are examined, and it is established that such flows exhibit multiple equilibrium states for a wide range of parameters. A STM is then constructed, consisting of the large scale zonal flow and a topographic mode. It is shown that, qualitatively, this system behaves similarly to the DNS as far as the interaction between the zonal flow and topography is concerned, and, in particular, exhibits multiple equilibrium states. By fitting the analytical form of the topographic stationary wave amplitude, obtained from the STM, to the results obtained from DNS, renormalized dissipation and rotation parameters are obtained. The usage of renormalized parameters in the STM results in better quantitative agreement with the DNS.¶ In the second type of problem, subgrid-scale parameterizations in LES are investigated with both atmospheric and oceanic parameters. This is in the context of two-level QG flows on the sphere, mostly, but not exclusively, employing a spherical harmonic triangular truncation at wavenumber 63 (T63) or higher. The methodology that is used is spectral, and is motivated by the stochastic representation of statistical closure theory, with the ‘damping’ and forcing covariance, representing backscatter, determined from the statistics of DNS. The damping and forcing covariance are formulated as 2 × 2 matrices for each wavenumber. As well as the transient subgrid tendency, the mean subgrid tendency is needed in the LES when the energy injection region is unresolved; this is also calculated from the statistics of the DNS. For comparison, a deterministic parameterization scheme consisting of 2×2 ‘damping’ parameters, which are calculated from the statistics of DNS, has been constructed. The main difference between atmospheric and oceanic flows, in this thesis, is that the atmospheric LES completely resolves the deformation scale, the energy and enstrophy injection region, and the truncation scale is spectrally distant from it, being well in the enstrophy cascade inertial range. In oceanic flows, however, the truncation scale is in the vicinity of the injection scale, at least for the parameters chosen, and is therefore not in an inertial range. A lower resolution oceanic LES at T15 is also examined, in which case the injection region is not resolved at all.¶ For atmospheric flows, it is found that, at T63, the matrix parameters are practically diagonal so that stratified atmospheric flows at these resolutions may be treated as uncoupled layers as far as subgrid-scale parameterizations are concerned. It is also found that the damping parameters are relatively independent of the (vertical) level, but the backscatter parameters are proportional to the subgrid flux in a given level. The stochastic and deterministic parameterization schemes give comparably good results relative to the DNS. For oceanic flows, it is found that the full matrix structure of the parameters must be used. Furthermore, it is found that there is a strong injection of barotropic energy from the subgrid scales, due to the unresolved, or partially resolved, baroclinic instability injection scales. It is found that the deterministic parameterization is too numerically unstable to be of use in the LES, and instead the stochastic parameterization must be used to obtain good agreement with the DNS. The subgrid tendency of the ensemble mean flow is also needed in some problems, and is found to reduce the available potential energy of the flow.

Page generated in 0.0532 seconds