• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • Tagged with
  • 30
  • 30
  • 30
  • 24
  • 16
  • 16
  • 16
  • 12
  • 12
  • 12
  • 10
  • 10
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Desenvolvimento de veículos autônomos submarinos para aplicações oceanográficas. / Development of autonomous underwater vehicles for oceanographic applications.

Oliveira, Lucas Machado de 06 December 2017 (has links)
Devido à grande importância do ambiente aquático sobre a vida humana e às dificuldades inerentes ao seu estudo e exploração, a aplicação de AUVs tem se mostrado bastante benéfica e seu uso vem crescendo ao longo dos anos. Este trabalho apresenta um estudo sobre o desenvolvimento de veículos autônomos submarinos para realização de missões oceanográficas, com foco nas características de seus sistemas embarcados que permitam atender melhor os requisitos desta aplicação. Analisando trabalhos publicados nos últimos anos pode-se notar uma grande quantidade de AUVs desenvolvidos ou adaptados para aplicações em oceanografia, com uma grande variedade de soluções aplicadas em seus diversos sistemas, visando a realização de diversos tipos de missões necessárias para tais estudos. Como estudo de caso, foi apresentada a adaptação do AUV Pirajuba, desenvolvido inicialmente como uma plataforma de testes hidrodinâmicos, para aplicação em missões de levantamento de dados para estudos oceanográficos. Para tal, foi necessário realizar uma série de modificações em seus subsistemas, permitindo a instalação de novos sensores e equipamentos para aumento da segurança nas operações em mar aberto. As modificações necessárias envolveram tanto o sistema hidromecânico do veículo, com instalação de novos módulos no casco, quanto no seu sistema embarcado, implicando no desenvolvimento de uma nova versão do sistema de hardware e uma atualização no software de controle. Tendo em vista esta necessidade, foi proposto um estudo dos requisitos da aplicação oceanográfica de AUVs e os impactos no seu desenvolvimento. Para isso, foi realizado um levantamento dos requisitos das principais aplicações oceanográficas e seus impactos no desenvolvimento dos veículos, envolvendo os sistemas hidromecânico, energia, navegação, comunicação e controle. Foi realizado também um estudo da arquitetura de controle CANARMES, desenvolvida para o AUV Pirajuba, envolvendo os requisitos de seu projeto e as principais características da arquitetura de controle, que serviu como base para a atualização do veículo para as novas aplicações. São apresentados os resultados obtidos em testes de campo realizados no litoral de Ubatuba - SP, nos quais foram feitas manobras com movimentação vertical com a aquisição de dados de diversos sensores oceanográficos, utilizados para o estudo de detecção de camadas finas. / Due to the great importance of the aquatic environment on human life and the inherent difficulties of its study and exploration, the application of AUVs has been shown to be very beneficial and its use has been growing over the years. This work presents a study on the development of autonomous submarine vehicles for the accomplishment of oceanographic missions, focusing on the characteristics of the embedded systems of these vehicles in order to better meet the application requirements. Analyzing published works in the last five years, it can be noticed a great amount of AUVs developed or adapted for applications in oceanography, with a great variety of solutions applied in their embedded systems, involving both hardware and software, aiming at the accomplishment of several types of missions necessary for such studies. As a case study, the adaptation of the AUV Pirajuba, initially developed as a platform for hydrodynamic tests, was presented for application in data collection missions for oceanographic studies. For this, it was necessary to make a series of modifications in its subsystems, allowing the installation of new sensors and equipment to increase the safety in the operations in the open sea. The necessary modifications involved both the vehicle\'s hydromechanical system, with the installation of new modules in the hull, and in its embedded system, requiring the development of a new version of the hardware system and an update in the control software. Due to this necessities, a study was proposed to better understand the requirements of AUVs for oceanographic application and the impacts on their development. For that, a survey was made of the requirements of the main oceanographic applications and their impacts on the development of the vehicles, involving the hydromechanical, energy, navigation, communication and control systems. A study of the CANARMES control architecture, developed for the Pirajuba AUV, was carried out, involving the requirements of its design and the main characteristics of the control architecture, which served as a basis for updating the vehicle for new applications. We present the results obtained in field tests conducted in the coastal area of Ubatuba - SP, Brazil, in which maneuvers were performed with vertical movement, while acquiring data from several oceanographic sensors, used for the study of thin layer detection.
22

Sistema de posicionamento dinâmico baseado em visão computacional e laser. / Dynamic positioning system based on computer vision and laser.

Buscariollo, Paulo Henrique 10 July 2008 (has links)
Nos últimos anos, tem se intensificado o desenvolvimento de novas tecnologias para serem aplicadas à veículos submersíveis não tripulados. Uma delas é a visão computacional, que tem o objetivo de extrair informações úteis das imagens captadas do ambiente, podendo ser utilizada como um sensor para o posicionamento do veículo, além de contribuir para o reconhecimento automático de objetos a serem inspecionados. A finalidade de um veículo submersível não tripulado é efetuar missões de inspeções ou pequenos reparos em estruturas submersas em meios oceânicos ou fluviais. Nessas operações, é importante que o veículo possua um controle autônomo, por meio de um sistema de posicionamento dinâmico, para facilitar a sua operação e garantir o sucesso da missão. Em função destas necessidades, este trabalho concentra-se no desenvolvimento de um sistema de visão computacional auxiliado por ponteiros de raio laser, que geram marcos visuais artificiais em ambientes não estruturados, possibilitando medir distâncias e ângulo de aproamento baseado no método da triangulação. Foram testados lasers com diferentes comprimentos de onda, em ambiente aéreo e subaquático, com diferentes índices de turbidez, nível de luminosidade e distância. Baseado nos resultados e utilizando o sistema de visão e laser como método de sensoriamento, foi projetado e implantado um sistema de posicionamento dinâmico para o plano horizontal, utilizando Filtro de Kalman. A avaliação do sistema de posicionamento dinâmico e do método de sensoriamento foi realizada por meio de simulação numérica e averiguação experimental, utilizando-se um modelo reduzido de um veículo de superfície no laboratório do Departamento de Engenharia Naval e Oceânica da Escola Politécnica da Universidade de São Paulo. Os resultados experimentais indicaram a viabilidade da aplicação do método de sensoriamento baseado em visão computacional e laser para sistemas de posicionamento dinâmico, mostrando-se um método simples, confiável, ativo e independente. / The development of new technologies to improve unmanned underwater vehicles has recently intensified. Computer vision, one such example, has the objective of extracting useful information from images captured in the environment; this information can facilitate vehicle positioning and the reconnaissance of objects to be inspected. Purposes of unmanned underwater vehicles include inspection missions and small repairs in underwater structures located in oceans or rivers. For these operations it is important for the vehicle to have an autonomous control system using dynamic positioning system to facilitate its operation and to guarantee the missions success. Given these necessities, this study concentrates on the development of a computer vision system supported by laser pointing devices that generate artificial landmarks in non-structured environments, facilitating distance and angle measurement based on the triangulation method. Lasers of different wavelengths were tested in air and underwater environments, where the latter had different indices of turbidity, levels of luminosity, and distance. Based on the results and utilizing the system of vision and laser as a sensor method, a dynamic positioning system for the horizontal plane has been created through the use of Extended Kalman Filter. The evaluation of this dynamic positioning system and of the sensor method was accomplished through numeric simulation and experimental checks using a reduced model of a surface vehicle, located in the University of São Paulos Department of Naval and Oceanic Engineering. The experimental results show that the application of the sensor method based on laser and computer vision for the dynamic positioning system is viable and proved to be an independent, active, reliable, and simple method.
23

Desenvolvimento de veículos autônomos submarinos para aplicações oceanográficas. / Development of autonomous underwater vehicles for oceanographic applications.

Lucas Machado de Oliveira 06 December 2017 (has links)
Devido à grande importância do ambiente aquático sobre a vida humana e às dificuldades inerentes ao seu estudo e exploração, a aplicação de AUVs tem se mostrado bastante benéfica e seu uso vem crescendo ao longo dos anos. Este trabalho apresenta um estudo sobre o desenvolvimento de veículos autônomos submarinos para realização de missões oceanográficas, com foco nas características de seus sistemas embarcados que permitam atender melhor os requisitos desta aplicação. Analisando trabalhos publicados nos últimos anos pode-se notar uma grande quantidade de AUVs desenvolvidos ou adaptados para aplicações em oceanografia, com uma grande variedade de soluções aplicadas em seus diversos sistemas, visando a realização de diversos tipos de missões necessárias para tais estudos. Como estudo de caso, foi apresentada a adaptação do AUV Pirajuba, desenvolvido inicialmente como uma plataforma de testes hidrodinâmicos, para aplicação em missões de levantamento de dados para estudos oceanográficos. Para tal, foi necessário realizar uma série de modificações em seus subsistemas, permitindo a instalação de novos sensores e equipamentos para aumento da segurança nas operações em mar aberto. As modificações necessárias envolveram tanto o sistema hidromecânico do veículo, com instalação de novos módulos no casco, quanto no seu sistema embarcado, implicando no desenvolvimento de uma nova versão do sistema de hardware e uma atualização no software de controle. Tendo em vista esta necessidade, foi proposto um estudo dos requisitos da aplicação oceanográfica de AUVs e os impactos no seu desenvolvimento. Para isso, foi realizado um levantamento dos requisitos das principais aplicações oceanográficas e seus impactos no desenvolvimento dos veículos, envolvendo os sistemas hidromecânico, energia, navegação, comunicação e controle. Foi realizado também um estudo da arquitetura de controle CANARMES, desenvolvida para o AUV Pirajuba, envolvendo os requisitos de seu projeto e as principais características da arquitetura de controle, que serviu como base para a atualização do veículo para as novas aplicações. São apresentados os resultados obtidos em testes de campo realizados no litoral de Ubatuba - SP, nos quais foram feitas manobras com movimentação vertical com a aquisição de dados de diversos sensores oceanográficos, utilizados para o estudo de detecção de camadas finas. / Due to the great importance of the aquatic environment on human life and the inherent difficulties of its study and exploration, the application of AUVs has been shown to be very beneficial and its use has been growing over the years. This work presents a study on the development of autonomous submarine vehicles for the accomplishment of oceanographic missions, focusing on the characteristics of the embedded systems of these vehicles in order to better meet the application requirements. Analyzing published works in the last five years, it can be noticed a great amount of AUVs developed or adapted for applications in oceanography, with a great variety of solutions applied in their embedded systems, involving both hardware and software, aiming at the accomplishment of several types of missions necessary for such studies. As a case study, the adaptation of the AUV Pirajuba, initially developed as a platform for hydrodynamic tests, was presented for application in data collection missions for oceanographic studies. For this, it was necessary to make a series of modifications in its subsystems, allowing the installation of new sensors and equipment to increase the safety in the operations in the open sea. The necessary modifications involved both the vehicle\'s hydromechanical system, with the installation of new modules in the hull, and in its embedded system, requiring the development of a new version of the hardware system and an update in the control software. Due to this necessities, a study was proposed to better understand the requirements of AUVs for oceanographic application and the impacts on their development. For that, a survey was made of the requirements of the main oceanographic applications and their impacts on the development of the vehicles, involving the hydromechanical, energy, navigation, communication and control systems. A study of the CANARMES control architecture, developed for the Pirajuba AUV, was carried out, involving the requirements of its design and the main characteristics of the control architecture, which served as a basis for updating the vehicle for new applications. We present the results obtained in field tests conducted in the coastal area of Ubatuba - SP, Brazil, in which maneuvers were performed with vertical movement, while acquiring data from several oceanographic sensors, used for the study of thin layer detection.
24

Localização de Monte Carlo aplicada a robôs submarinos. / Monte Carlo localization for underwater robots.

Rodrigo Telles da Silva Vale 10 September 2014 (has links)
A tarefa de operar um veículo submarino durante missões de inspeção de ambientes estruturados como, por exemplo, duto de usinas hidrelétricas, é feita principalmente por meio de referências visuais e uma bússola magnética. Porém alguns ambientes desse tipo podem apresentar uma combinação de baixa visibilidade e anomalias ferromagnéticas que inviabilizaria esse tipo de operação. Este trabalho, motivado pelo desenvolvimento de um veículo submarino operado remotamente (ROV) para ser usado em ambientes com essas restrições, propõe um sistema de navegação que utiliza o conhecimento prévio das dimensões do ambiente para corrigir o estado do veículo por meio da correlação dessas dimensões com os dados de um sonar de imageamento 2D. Para fazer essa correlação é utilizado o ltro de partículas, que é uma implementação não paramétrica do ltro Bayesiano. Esse ltro faz a estimação do estado com base nos métodos sequenciais de Monte Carlo e permite trabalhar de uma maneira simples com modelos não lineares. A desvantagem desse tipo de fusão sensorial é o seu alto custo computacional o que geralmente o impede de ser utilizado em aplicações de tempo real. Para que seja possível utilizar esse ltro em tempo real, será proposto neste trabalho uma implementação paralela utilizando uma unidade de processamento gráco (GPU) da NVIDIA e a arquitetura CUDA. Neste trabalho também será feito um estudo da utilização de duas congurações de sensores no sistema de navegação proposto neste trabalho. / The task of navigating a Remotely Operated underwater Vehicles (ROV) during inspection of man-made structures is performed mostly by visual references and occasionally a magnetic compass. Yet, some environments present a combination of low visibility and ferromagnetic anomalies that negates this approach. This paper, motivated by the development of a ROV designed to work on such environment, proposes a navigation method for this kind of vehicle. As the modeling of the system is nonlinear, the method proposed uses a particle lter to represent the vehicle state that is a nonparametric implementation of the Bayes lter. This method to work needs a priori knowledge of the environment map and to make the data association with this map, a 2D image sonar is used. The drawback of the sensor fusion used in this work is its high computational cost which generally prevents it from being used in real time applications. To be possible for this lter to be used in real time application, in this work is proposed a parallel implementation using a graphics processing unit (GPU) from NVIDIA and CUDA architecture. In this work is also made a study of two types of sensors conguration on the navigation system proposed in this work.
25

Análise de um sistema de navegação para veículo submarino autônomo. / Navigation system analysis for autonomous underwater vehicles.

Rodrigo Eiji Yamagata Diana 07 May 2018 (has links)
O ambiente aquático tem notória importância para a pesquisa, pela biodiversidade e vastidão, e também do ponto de vista comercial, para a indústria militar e de óleo&gás por exemplo. Entretanto, a sua exploração é prejudicada por diversos fatores, entre eles devido à dificuldade de navegação. Infelizmente, carece-se de sinal GPS (Global Positioning System) embaixo d\'água, o que exige outras técnicas de localização. Assim, este trabalho analisa um sistema de navegação para um veículo submarino autônomo. Graças a sensores de velocidade, girômetros, bússola, entre outros, aplica-se o princípio de dead reckoning para calcular a posição atual do veículo a partir da última posição conhecida. Para tal, é feito inicialmente um estudo dos sensores a serem utilizados e um algoritmo de navegação é proposto, cujos resultados são expressos em coordenadas geodésicas (latitude e longitude), permitindo a visualização da trajetória do veículo em mapas geo-referenciados. Além disso, problemas práticos de medição são tratados. Em seguida, é feito um estudo sobre o ruído dos sensores, utilizando a curva de variância de Allan para caracterização dos sinais dos girômetros e do DVL (Doppler Velocity Logger). Por meio de equações de propagação de erro, os ruídos são recuperados em simulação, permitindo a estimação do erro de posição e de atitude (posição angular) acumulados para uma dada manobra. Finalmente, discute-se um critério de emersão a partir das estimativas de erro de posição. / The main part of our planet is filled with water, so the aquatic environment has notorious research and commercial importance. However, its exploration faces many difficulties. In navigation, the lack of GPS signal (Global Positioning System) during underwater missions requires different techniques, so this document focus on analyzing a navigation system for autonomous underwater vehicles. Thanks to different embedded sensors, like DVL (Doppler Velocity Logger), compass, gyrometers and others, the processes of dead reckoning is applied, witch calculates vehicle\'s current position by using the previously determined position. To do so, a navigation algorithm is implemented, providing geodesic coordinates to plot vehicle\'s trajectories on geo-referenced maps. Also, practical difficulties are discussed and treated. To improve the quality of the results, girometer\'s and DVL\'s errors are analyzed using Allan\'s variance and the navigation errors are estimated using first order time derivative equations in an augmented state space. Lastly, it is discussed a criterion to emerge and correct the vehicle\'s position using GPS signal.
26

Sistema de posicionamento dinâmico baseado em visão computacional e laser. / Dynamic positioning system based on computer vision and laser.

Paulo Henrique Buscariollo 10 July 2008 (has links)
Nos últimos anos, tem se intensificado o desenvolvimento de novas tecnologias para serem aplicadas à veículos submersíveis não tripulados. Uma delas é a visão computacional, que tem o objetivo de extrair informações úteis das imagens captadas do ambiente, podendo ser utilizada como um sensor para o posicionamento do veículo, além de contribuir para o reconhecimento automático de objetos a serem inspecionados. A finalidade de um veículo submersível não tripulado é efetuar missões de inspeções ou pequenos reparos em estruturas submersas em meios oceânicos ou fluviais. Nessas operações, é importante que o veículo possua um controle autônomo, por meio de um sistema de posicionamento dinâmico, para facilitar a sua operação e garantir o sucesso da missão. Em função destas necessidades, este trabalho concentra-se no desenvolvimento de um sistema de visão computacional auxiliado por ponteiros de raio laser, que geram marcos visuais artificiais em ambientes não estruturados, possibilitando medir distâncias e ângulo de aproamento baseado no método da triangulação. Foram testados lasers com diferentes comprimentos de onda, em ambiente aéreo e subaquático, com diferentes índices de turbidez, nível de luminosidade e distância. Baseado nos resultados e utilizando o sistema de visão e laser como método de sensoriamento, foi projetado e implantado um sistema de posicionamento dinâmico para o plano horizontal, utilizando Filtro de Kalman. A avaliação do sistema de posicionamento dinâmico e do método de sensoriamento foi realizada por meio de simulação numérica e averiguação experimental, utilizando-se um modelo reduzido de um veículo de superfície no laboratório do Departamento de Engenharia Naval e Oceânica da Escola Politécnica da Universidade de São Paulo. Os resultados experimentais indicaram a viabilidade da aplicação do método de sensoriamento baseado em visão computacional e laser para sistemas de posicionamento dinâmico, mostrando-se um método simples, confiável, ativo e independente. / The development of new technologies to improve unmanned underwater vehicles has recently intensified. Computer vision, one such example, has the objective of extracting useful information from images captured in the environment; this information can facilitate vehicle positioning and the reconnaissance of objects to be inspected. Purposes of unmanned underwater vehicles include inspection missions and small repairs in underwater structures located in oceans or rivers. For these operations it is important for the vehicle to have an autonomous control system using dynamic positioning system to facilitate its operation and to guarantee the missions success. Given these necessities, this study concentrates on the development of a computer vision system supported by laser pointing devices that generate artificial landmarks in non-structured environments, facilitating distance and angle measurement based on the triangulation method. Lasers of different wavelengths were tested in air and underwater environments, where the latter had different indices of turbidity, levels of luminosity, and distance. Based on the results and utilizing the system of vision and laser as a sensor method, a dynamic positioning system for the horizontal plane has been created through the use of Extended Kalman Filter. The evaluation of this dynamic positioning system and of the sensor method was accomplished through numeric simulation and experimental checks using a reduced model of a surface vehicle, located in the University of São Paulos Department of Naval and Oceanic Engineering. The experimental results show that the application of the sensor method based on laser and computer vision for the dynamic positioning system is viable and proved to be an independent, active, reliable, and simple method.
27

Identificação e controle de um veículo submersível autônomo sub-atuado. / Identification and control of a sub-actuated autonomous underwater vehicle.

Cutipa Luque, Juan Carlos 22 June 2012 (has links)
O presente trabalho apresenta a descrição de um modelo matemático completo em seis graus de liberdade para um Veículo Submersível Autônomo (VSA) sub-atuado. Desenvolveram-se métodos de identificação de sistemas para identificar o modelo não linear do veículo. A fim de evitar problemas de divergência na estimação de parâmetros hidrodinâmicos do modelo, usou-se o método de transformação paramétrica. Usou-se o filtro estendido de Kalman como estratégia para o processo de estimação de parâmetros quando ruídos de natureza gaussiana estavam presentes no modelo e nas medidas. Com o objetivo de estimar um maior número de parâmetros de uma só vez, empregou-se o método de máxima verossimilhança. Os experimentos mostraram que o filtro de Kalman responde bem à estimação de parâmetros específicos, porém, divergiu facilmente à estimação de múltiplos parâmetros. Uma alternativa que apresentou melhor desempenho foi o método de máxima verossimilhança. Testaram-se manobras circulares e de zig-zags para a obtenção de dados do veículo. Para os ensaios experimentais, utilizou-se o VSA sub-atuado do Laboratório de Veículos Não Tripulados (LVNT) do Departamento de Engenharia Mecatrônica da Escola Politécnica da Universidade de São Paulo. Validou-se o modelo identificado mediante o simulador do veículo. Numa segunda etapa, desenvolveram-se controladores H¥ capazes de controlar a dinâmica do VSA em seus seis graus de liberdade. Projetaram-se controladores SISO (uma entrada e uma saída) e MIMO (múltiplas entradas e múltiplas saídas) com o fim de avaliar o acoplamento dinâmico do sistema. Projetaram-se controladores centralizados robustos para garantir as condições de operação num ambiente marinho e em condições de laboratório próximas às de uma aplicação real. As leis de controle são baseadas na técnica de sensibilidade mista H¥ que garantem condições de robustez do sistema de controle, tanto no desempenho quanto na estabilidade. Uma estrutura de controle de dois graus de liberdade (2GL) produziu melhores propriedades de desempenho comparada com a estrutura do controlador de um grau de liberdade. Compararam-se as respostas dos controladores descentralizados SISO e os controladores centralizados. O controlador 2GL garantiu as especificações do projeto, inclusive aquelas definidas no domínio do tempo. Um controlador central pode controlar o veículo na realização de manobras complexas em três dimensões que emulem a inspeção ou monitoramento de sistemas offshores ou outras tarefas comuns na exploração submarinha. O trabalho apresenta também a integração dos algoritmos de controle com o sistema de tempo real embarcado, os sensores inerciais de navegação, os motores elétricos para os atuadores lemes e o propulsor, o banco de baterias e o processador central ARM7 de 32 bits de ponto fixo. Traduziram-se os algoritmos de controle de ordem elevada para a aritmética de ponto fixo produzindo a execução rápida e, no possível, evitando a ocorrência de transbordamento de dados. / This work presents a full six degrees-of-freedom mathematical model description of a subactuated Autonomous Underwater Vehicle (AUV). The work developed methods of System Identification for identifying the nonlinear model of the vehicle. In order to avoid divergence problems in the process of hydrodynamic, it used the parametric transformation technique. It used the extended Kalman filter to estimate the model parameters subject to Gaussian noise, in the process and in the measurements. In order to tackle the problem of multiple parameter estimation at once, the work used the maximum likelihood approach. The experimental results showed that the Kalman filter approach is better when the aim is to estimate a specific parameter, however, it diverges easily when the aim is to estimate multiple parameters. The maximum likelihood technique showed better response to estimate multiple parameters of the model. Zig-zag and circular standard maneuvers were tested with the identification algorithms. For experimental tests, an AUV, namely Pirajuba and constructed by the Unmanned Vehicle Laboratory (LVNT), were used. Results were also assessed using an AUV six degrees of freedom simulator. In a second stage, the work developed H¥ controllers to manoeuvre the vehicle in six-degrees-of-freedom. Decoupled SISO (single input and single output variables) and MIMO (multiple input and multiple output variables) controllers were synthesized in order to validate the coupling dynamics of the AUV. Moreover, centralized robust controllers were developed to control the vehicle in the sea and in test tanks with extreme conditions close to the ocean environmental. The control techniques were based in the H¥ mixed sensitivity approach which guarantees robust performance and stability of the sub-actuated system. A structure of two-degrees-of-freedom (2GL) controller presented better performance compared with the classic single H¥ controller of one degree of freedom structure. A comparison between responses was used to validate the decoupling and centralized controllers. The 2GL controller has good performance specifications despite these defined in the time domain. A central controller can control the AUV in complex maritime task that require complex and three-dimensional manoeuvres. The work deals also with the implementation issues coding these advanced control algorithms into the real time embedded system including inertial sensors, electric motors for the propeller and actuator surfaces, battery banks, and the unit central process ARM7 of 32 bits of fixed point. The control algorithms were translated from floating point to fixed point arithmetic avoiding data overflow, seeking simplicity and fast task execution.
28

Simulação com hardware in the loop aplicada a veículos submarinos semi-autônomos. / Hardware in the loop simulation applied to semi-autonomous underwater vehicles.

Silva, Hilgad Montelo da 18 November 2008 (has links)
Veículos Submarinos Não Tripulados (UUVs Unmanned Underwater Vehicles) possuem muitas aplicações comerciais, militares e científicas devido ao seu elevado potencial e relação custo-desempenho considerável quando comparados a meios tradicionais utilizados para a obtenção de informações provenientes do meio subaquático. O desenvolvimento de uma plataforma de testes e amostragem confiável para estes veículos requer o projeto de um sistema completo além de exigir diversos e custosos experimentos realizados no mar para que as especificações possam ser devidamente validadas. Modelagem e simulação apresentam medidas de custo efetivo para o desenvolvimento de componentes preliminares do sistema (software e hardware), além de verificação e testes relacionados à execução de missões realizadas por veículos submarinos reduzindo, portanto, a ocorrência de potenciais falhas. Um ambiente de simulação preciso pode auxiliar engenheiros a encontrar erros ocultos contidos no software embarcado do UUV além de favorecer uma maior introspecção dentro da dinâmica e operação do veículo. Este trabalho descreve a implementação do algoritmo de controle de um UUV em ambiente MATLAB/SIMULINK, sua conversão automática para código compilável (em C++) e a verificação de seu funcionamento diretamente no computador embarcado por meio de simulações. Detalham-se os procedimentos necessários para permitir a conversão dos modelos em MATLAB para código C++, integração do software de controle com o sistema operacional de tempo real empregado no computador embarcado (VxWORKS) e a estratégia de simulação com Hardware In The Loop (HIL) desenvolvida - A principal contribuição deste trabalho é apresentar de forma racional uma estrutura de trabalho que facilite a implementação final do software de controle no computador embarcado a partir do modelo desenvolvido em um ambiente amigável para o projetista, como o SIMULINK. / Unmanned Underwater Vehicles (UUVs) have many commercial, military, and scientific applications because of their potential capabilities and significant costperformance improvements over traditional means of obtaining valuable underwater information The development of a reliable sampling and testing platform for these vehicles requires a thorough system design and many costly at-sea trials during which systems specifications can be validated. Modeling and simulation provide a cost-effective measure to carry out preliminary component, system (hardware and software), and mission testing and verification, thereby reducing the number of potential failures in at-sea trials. An accurate simulation environment can help engineers to find hidden errors in the UUV embedded software and gain insights into the UUV operation and dynamics. This work describes the implementation of a UUV\'s control algorithm using MATLAB/SIMULINK, its automatic conversion to an executable code (in C++) and the verification of its performance directly into the embedded computer using simulations. It is detailed the necessary procedure to allow the conversion of the models from MATLAB to C++ code, integration of the control software with the real time operating system used on the embedded computer (VxWORKS) and the developed strategy of Hardware in the loop Simulation (HILS). The Main contribution of this work is to present a rational framework to support the final implementation of the control software on the embedded computer, starting from the model developed on an environment friendly to the control engineers, like SIMULINK.
29

Identificação e controle de um veículo submersível autônomo sub-atuado. / Identification and control of a sub-actuated autonomous underwater vehicle.

Juan Carlos Cutipa Luque 22 June 2012 (has links)
O presente trabalho apresenta a descrição de um modelo matemático completo em seis graus de liberdade para um Veículo Submersível Autônomo (VSA) sub-atuado. Desenvolveram-se métodos de identificação de sistemas para identificar o modelo não linear do veículo. A fim de evitar problemas de divergência na estimação de parâmetros hidrodinâmicos do modelo, usou-se o método de transformação paramétrica. Usou-se o filtro estendido de Kalman como estratégia para o processo de estimação de parâmetros quando ruídos de natureza gaussiana estavam presentes no modelo e nas medidas. Com o objetivo de estimar um maior número de parâmetros de uma só vez, empregou-se o método de máxima verossimilhança. Os experimentos mostraram que o filtro de Kalman responde bem à estimação de parâmetros específicos, porém, divergiu facilmente à estimação de múltiplos parâmetros. Uma alternativa que apresentou melhor desempenho foi o método de máxima verossimilhança. Testaram-se manobras circulares e de zig-zags para a obtenção de dados do veículo. Para os ensaios experimentais, utilizou-se o VSA sub-atuado do Laboratório de Veículos Não Tripulados (LVNT) do Departamento de Engenharia Mecatrônica da Escola Politécnica da Universidade de São Paulo. Validou-se o modelo identificado mediante o simulador do veículo. Numa segunda etapa, desenvolveram-se controladores H¥ capazes de controlar a dinâmica do VSA em seus seis graus de liberdade. Projetaram-se controladores SISO (uma entrada e uma saída) e MIMO (múltiplas entradas e múltiplas saídas) com o fim de avaliar o acoplamento dinâmico do sistema. Projetaram-se controladores centralizados robustos para garantir as condições de operação num ambiente marinho e em condições de laboratório próximas às de uma aplicação real. As leis de controle são baseadas na técnica de sensibilidade mista H¥ que garantem condições de robustez do sistema de controle, tanto no desempenho quanto na estabilidade. Uma estrutura de controle de dois graus de liberdade (2GL) produziu melhores propriedades de desempenho comparada com a estrutura do controlador de um grau de liberdade. Compararam-se as respostas dos controladores descentralizados SISO e os controladores centralizados. O controlador 2GL garantiu as especificações do projeto, inclusive aquelas definidas no domínio do tempo. Um controlador central pode controlar o veículo na realização de manobras complexas em três dimensões que emulem a inspeção ou monitoramento de sistemas offshores ou outras tarefas comuns na exploração submarinha. O trabalho apresenta também a integração dos algoritmos de controle com o sistema de tempo real embarcado, os sensores inerciais de navegação, os motores elétricos para os atuadores lemes e o propulsor, o banco de baterias e o processador central ARM7 de 32 bits de ponto fixo. Traduziram-se os algoritmos de controle de ordem elevada para a aritmética de ponto fixo produzindo a execução rápida e, no possível, evitando a ocorrência de transbordamento de dados. / This work presents a full six degrees-of-freedom mathematical model description of a subactuated Autonomous Underwater Vehicle (AUV). The work developed methods of System Identification for identifying the nonlinear model of the vehicle. In order to avoid divergence problems in the process of hydrodynamic, it used the parametric transformation technique. It used the extended Kalman filter to estimate the model parameters subject to Gaussian noise, in the process and in the measurements. In order to tackle the problem of multiple parameter estimation at once, the work used the maximum likelihood approach. The experimental results showed that the Kalman filter approach is better when the aim is to estimate a specific parameter, however, it diverges easily when the aim is to estimate multiple parameters. The maximum likelihood technique showed better response to estimate multiple parameters of the model. Zig-zag and circular standard maneuvers were tested with the identification algorithms. For experimental tests, an AUV, namely Pirajuba and constructed by the Unmanned Vehicle Laboratory (LVNT), were used. Results were also assessed using an AUV six degrees of freedom simulator. In a second stage, the work developed H¥ controllers to manoeuvre the vehicle in six-degrees-of-freedom. Decoupled SISO (single input and single output variables) and MIMO (multiple input and multiple output variables) controllers were synthesized in order to validate the coupling dynamics of the AUV. Moreover, centralized robust controllers were developed to control the vehicle in the sea and in test tanks with extreme conditions close to the ocean environmental. The control techniques were based in the H¥ mixed sensitivity approach which guarantees robust performance and stability of the sub-actuated system. A structure of two-degrees-of-freedom (2GL) controller presented better performance compared with the classic single H¥ controller of one degree of freedom structure. A comparison between responses was used to validate the decoupling and centralized controllers. The 2GL controller has good performance specifications despite these defined in the time domain. A central controller can control the AUV in complex maritime task that require complex and three-dimensional manoeuvres. The work deals also with the implementation issues coding these advanced control algorithms into the real time embedded system including inertial sensors, electric motors for the propeller and actuator surfaces, battery banks, and the unit central process ARM7 of 32 bits of fixed point. The control algorithms were translated from floating point to fixed point arithmetic avoiding data overflow, seeking simplicity and fast task execution.
30

Simulação com hardware in the loop aplicada a veículos submarinos semi-autônomos. / Hardware in the loop simulation applied to semi-autonomous underwater vehicles.

Hilgad Montelo da Silva 18 November 2008 (has links)
Veículos Submarinos Não Tripulados (UUVs Unmanned Underwater Vehicles) possuem muitas aplicações comerciais, militares e científicas devido ao seu elevado potencial e relação custo-desempenho considerável quando comparados a meios tradicionais utilizados para a obtenção de informações provenientes do meio subaquático. O desenvolvimento de uma plataforma de testes e amostragem confiável para estes veículos requer o projeto de um sistema completo além de exigir diversos e custosos experimentos realizados no mar para que as especificações possam ser devidamente validadas. Modelagem e simulação apresentam medidas de custo efetivo para o desenvolvimento de componentes preliminares do sistema (software e hardware), além de verificação e testes relacionados à execução de missões realizadas por veículos submarinos reduzindo, portanto, a ocorrência de potenciais falhas. Um ambiente de simulação preciso pode auxiliar engenheiros a encontrar erros ocultos contidos no software embarcado do UUV além de favorecer uma maior introspecção dentro da dinâmica e operação do veículo. Este trabalho descreve a implementação do algoritmo de controle de um UUV em ambiente MATLAB/SIMULINK, sua conversão automática para código compilável (em C++) e a verificação de seu funcionamento diretamente no computador embarcado por meio de simulações. Detalham-se os procedimentos necessários para permitir a conversão dos modelos em MATLAB para código C++, integração do software de controle com o sistema operacional de tempo real empregado no computador embarcado (VxWORKS) e a estratégia de simulação com Hardware In The Loop (HIL) desenvolvida - A principal contribuição deste trabalho é apresentar de forma racional uma estrutura de trabalho que facilite a implementação final do software de controle no computador embarcado a partir do modelo desenvolvido em um ambiente amigável para o projetista, como o SIMULINK. / Unmanned Underwater Vehicles (UUVs) have many commercial, military, and scientific applications because of their potential capabilities and significant costperformance improvements over traditional means of obtaining valuable underwater information The development of a reliable sampling and testing platform for these vehicles requires a thorough system design and many costly at-sea trials during which systems specifications can be validated. Modeling and simulation provide a cost-effective measure to carry out preliminary component, system (hardware and software), and mission testing and verification, thereby reducing the number of potential failures in at-sea trials. An accurate simulation environment can help engineers to find hidden errors in the UUV embedded software and gain insights into the UUV operation and dynamics. This work describes the implementation of a UUV\'s control algorithm using MATLAB/SIMULINK, its automatic conversion to an executable code (in C++) and the verification of its performance directly into the embedded computer using simulations. It is detailed the necessary procedure to allow the conversion of the models from MATLAB to C++ code, integration of the control software with the real time operating system used on the embedded computer (VxWORKS) and the developed strategy of Hardware in the loop Simulation (HILS). The Main contribution of this work is to present a rational framework to support the final implementation of the control software on the embedded computer, starting from the model developed on an environment friendly to the control engineers, like SIMULINK.

Page generated in 0.1093 seconds