• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Reduction of Substrate Noise in Mixed-Signal Circuits

Backenius, Erik January 2005 (has links)
<p>Microelectronics is heading towards larger and larger systems implemented on a single chip. In wireless communication equipment, e.g., cellular phones, handheld computers etc., both analog and digital circuits are required. If several integrated circuits (ICs) are used in a system, a large amount of the power is consumed by the communication between the ICs. Furthermore, the communication between ICs is slow compared with on-chip communication. Therefore, it is favorable to integrate the whole system on a single chip, which is the objective in the system-on-chip (SoC) approach.</p><p>In a mixed-signal SoC, analog and digital circuits share the same chip. When digital circuits are switching, they produce noise that is spread through the silicon substrate to other circuits. This noise is known as substrate noise. The performance of sensitive analog circuits is degraded by the substrate noise in terms of, e.g., lower signal-to-noise ratio and lower spurious-free dynamic range. Another problem is the design of the clock distribution net, which is challenging in terms of obtaining low power consumption, sharp clock edges, and low simultaneous switching noise.</p><p>In this thesis, a noise reduction strategy that focus on reducing the amount of noise produced in digital clock buffers, is presented. The strategy is to use a clock with long rise and fall times. It is also used to relax the constraints on the clock distribution net, which also reduce the design effort. Measurements on a test chip show that the strategy can be implemented in an IC with low cost in terms of speed and power consumption. Comparisons between substrate coupling in silicon-on-insulator (SOI) and conventional bulk technology are made using simple models. The objective here is to get an understanding of how the substrate coupling differs in SOI from the bulk technology. The results show that the SOI has less substrate coupling when no guard band is used, up to a certain frequency that is highly dependent of the chip structure. When a guard band is introduced in one of the analyzed test structures, the bulk resulted in much higher attenuation compared with SOI. An on-chip measurement circuit aiming at measuring simultaneous switching noise has also been designed in a 0.13 µ SOI process.</p> / Report code: LiU-Tek-Lic-2005:33.
2

Reduction of Substrate Noise in Mixed-Signal Circuits

Backenius, Erik January 2007 (has links)
In many consumer products, e.g., cellular phones and handheld computers, both digital and analog circuits are required. Nowadays, it is possible to implement a large subsystem or even a complete system, that earlier required several chips, on a single chip. A system on chip (SoC) has generally the advantages of lower power consumption and a smaller fabrication cost compared with multi-chip solutions. The switching of digital circuits generates noise that is injected into the silicon substrate. This noise is known as substrate noise and is spread through the substrate to other circuits. The substrate noise received in an analog circuit degrades the performance of the circuit. This is a major design issue in mixed-signal ICs where analog and digital circuits share the same substrate. Two new noise reduction methods are proposed in this thesis work. The first focuses n reducing the switching noise generated in digital clock buffers. The strategy is to use a clock with long rise and fall times in conjunction with a special D flip-flop. It relaxes the constraints on the clock distribution net, which also reduce the design effort. Measurements on a test chip implemented in a 0.35 μm CMOS technology show that the method can be implemented in an IC with low cost in terms of speed and power consumption. A noise reduction up to 50% is obtained by using the method. The measured power consumption of the digital circuit, excluding the clock buffer, increased 14% when the rise and fall times of the clock were increased from 0.5 ns to 10 ns. The corresponding increase in propagation delay was less than 0.5 ns corresponding to an increase of 50% in propagation delay of the registers. The second noise reduction method focuses on reducing simultaneous switching noise below half the clock frequency. This frequency band is assumed to be the signal band of an analog circuit. The idea is to use circuits that have as close to periodic power supply currents as possible to obtain low simultaneous switching noise below the clock in the frequency domain. For this purpose we use precharged differential cascode switch logic together with a novel D flip-flop. To evaluate the method two pipelined adders have been implemented on transistor level in a 0.13 μm CMOS technology, where the novel circuit is implemented with our method and the reference circuit with static CMOS logic together with a TSPC D flip-flop. According to simulation results, the frequency components in the analog signal band can be attenuated from 10 dB up to 17 dB using the proposed method. The cost is mainly an increase in power consumption of almost a factor of three. Comparisons between substrate coupling in silicon-on-insulator (SOI) and conventional bulk technology are made using simple models. The objective is to get an understanding of how the substrate coupling differs in SOI from the bulk technology. The results show that the SOI has less substrate coupling if no guard band is used, up to a certain frequency that is dependent of the test case. Introducing a guard band resulted in a higher attenuation of substrate noise in bulk than in SOI. An on-chip measurement circuit aiming at measuring simultaneous switching noise has been designed in a 0.13 μm SOI CMOS technology. The measuring circuit uses a single comparator per channel where several passes are used to capture the waveform. Measurements on a fabricated testchip indicate that the measuring circuit works as intended. A small part of this thesis work has been done in the area of digit representation in digital circuits. A new approach to convert a number from two’s complement representation to a minimum signed-digit representation is proposed. Previous algorithms are working either from the LSB to the MSB (right-to-left) or from the MSB to the LSB (left-to-right). The novelty in the proposed algorithm is that the conversion is done from left-to-right and right-to-left concurrently. Using the proposed algorithm, the critical path in a conversion circuit can be nearly halved compared with the previous algorithms. The area and power consumption, of the implementation of the proposed algorithm, are somewhere between the left-to-right and right-to-left implementations. / Articles I, II, III, IV, VII and IX are published with permisson from IEEE dated 07/05/18. Copyright IEEE.
3

On Reduction of Substrate Noise in Mixed-Signal Circuits

Backenius, Erik January 2005 (has links)
Microelectronics is heading towards larger and larger systems implemented on a single chip. In wireless communication equipment, e.g., cellular phones, handheld computers etc., both analog and digital circuits are required. If several integrated circuits (ICs) are used in a system, a large amount of the power is consumed by the communication between the ICs. Furthermore, the communication between ICs is slow compared with on-chip communication. Therefore, it is favorable to integrate the whole system on a single chip, which is the objective in the system-on-chip (SoC) approach. In a mixed-signal SoC, analog and digital circuits share the same chip. When digital circuits are switching, they produce noise that is spread through the silicon substrate to other circuits. This noise is known as substrate noise. The performance of sensitive analog circuits is degraded by the substrate noise in terms of, e.g., lower signal-to-noise ratio and lower spurious-free dynamic range. Another problem is the design of the clock distribution net, which is challenging in terms of obtaining low power consumption, sharp clock edges, and low simultaneous switching noise. In this thesis, a noise reduction strategy that focus on reducing the amount of noise produced in digital clock buffers, is presented. The strategy is to use a clock with long rise and fall times. It is also used to relax the constraints on the clock distribution net, which also reduce the design effort. Measurements on a test chip show that the strategy can be implemented in an IC with low cost in terms of speed and power consumption. Comparisons between substrate coupling in silicon-on-insulator (SOI) and conventional bulk technology are made using simple models. The objective here is to get an understanding of how the substrate coupling differs in SOI from the bulk technology. The results show that the SOI has less substrate coupling when no guard band is used, up to a certain frequency that is highly dependent of the chip structure. When a guard band is introduced in one of the analyzed test structures, the bulk resulted in much higher attenuation compared with SOI. An on-chip measurement circuit aiming at measuring simultaneous switching noise has also been designed in a 0.13 µ SOI process. / <p>Report code: LiU-Tek-Lic-2005:33.</p>

Page generated in 0.1127 seconds