11 |
Ion-neutral coupling in the geomagnetically disturbed mid-latitude ionosphere as observed by SuperDARN HF radars and NATION Fabry-Perot InterferometersJoshi, Pratik Prasad 17 September 2015 (has links)
The earth's ionosphere-thermosphere region is a coupled environment which is governed by interactions between the overlapping neutral constituents and ionospheric plasma. The mid-latitude thermosphere-ionosphere system is very complex owing to its sensitivity to both the polar and equatorial processes. The mid-latitudes is also a relatively unexplored and less understood region primarily due to the paucity of observing instruments that have traditionally been available. However, the past 9 years of mid-latitude expansion of the Super Dual Auroral Radar Network (SuperDARN) has provided new access to continuous large-scale observations of the sub-auroral ionosphere. On the other hand, the past 3 years of mid-latitude expansion of the North American Thermosphere Ionosphere Observation Network (NATION) Fabry-Perot interferometer array, has created a critical resource for measuring the thermospheric neutral winds. The overlap of these two observing networks in the mid-east North American sector has resulted in a strong ground-based large-scale platform for co-located study of mid-latitude thermosphere-ionosphere dynamics for the first time. The coupling between ions and neutrals is a very important process for controlling the thermospheric dynamics. Ion-neutral coupling at high latitudes has been studied in many previous papers, but there have been very few studies focused on the mid-latitude region. Hence, in this work we have studied the ion-neutral coupling mechanisms and timescales at mid-latitudes during disturbed geomagnetic conditions by using the co-located observations from the SuperDARN-NATION array. The study has focused on the main phase as well as the late recovery phase of a geomagnetic storm which occurred on October 2-3, 2013. Ion drag is known to drive the neutral circulation during the main phase of storm at auroral latitudes, while the neutral wind disturbance dynamo mechanism is known to generate ionospheric electric fields and currents during the recovery phase. By using the methods of ion-neutral momentum exchange theory and time lagged correlation analysis, we analyzed the timescales at which the ion-neutral coupling operates. The ions are observed to drive the neutral winds on a timescale of ~ 84 minutes in the storm main phase which is significantly faster than expected from the driving due to local ion-drag alone (~ 124 minutes). This suggests that along with ion-drag, other local and non-local storm-time influences like Joule heating are also playing an important part in driving the neutral winds. On the other hand, in the late recovery phase, the neutral winds are found to be strongly coupled with the ions and maintain the ion convection without any significant time delay which is consistent with effect of the 'disturbance dynamo' or 'neutral-flywheel' persisting well into the late recovery phase. The timescales and underlying physics understood through this work serve as an important contribution to our knowledge of ion-neutral coupling processes at the middle latitudes. Looking forward, the expansion of co-located SuperDARN-NATION coverage at mid-latitudes, and developments in the tools of large-scale visualization through FPI wind field mapping and SuperDARN convection maps, has created a very strong basis for using the results and analysis tools developed in this work for large-scale ion-neutral coupling characterization in future. / Master of Science
|
12 |
An examination of ionospheric plasma irregularities detected by the mid-latitude SuperDARN radarsRibeiro, Alvaro John 06 May 2011 (has links)
The data from the new mid-latitude radars of the Super Dual Auroral Radar Network (SuperDARN) provide new types of challenges and observations. We have developed a method for identifying periods of ionospheric backscatter that increase the number of data and reduce the average velocity in agreement with previous incoherent scatter radar (ISR) studies. Analysis of the data identified by this method clearly shows that different types of ionospheric irregularities are being observed in the mid-latitude region. One type of irregularity is clearly subauroral and equatorward of the plasmapause. Fitting a convection pattern to the Doppler velocities associated with subauroral ionospheric scatter reveals some interesting features. Subauroral convection is shown to be westward thought most of the night, with an eastward turning near dawn. The rotation factor of the ionosphere relative to the rotation of the earth is shown to be ~0.95, which is in good agreement with previous studies of plasmaspheric corotation. / Master of Science
|
13 |
Study of SAPS-like flows with the King Salmon SuperDARN radarDrayton, Robyn Anne 06 November 2006
This thesis has two focuses. The major focus is an investigation of the nature of high-velocity ~2 km/s)ionospheric flows occasionally detected by the King Salmon SuperDARN radar at relatively low magnetic latitudes of 65^0. The second focus is a validation work on the quality of SuperDARN convection measurements. As an alternative convection-monitoring instrument, an ion drift meter onboard the DMSP satellite was chosen for comparison with SuperDARN. This study includes a broad range of velocities of up to ~1.5 km/s. Consideration of very large velocities is fundamentally important for successful research on the major topic of the thesis.<p>The validation work is performed first. Two approaches are undertaken. The first approach considers data at the raw level. SuperDARN F region line-of-sight velocities are directly compared with DMSP cross-track ion drifts in approximately the same directions. More than 200 satellite passes over the fields of view of five Northern Hemisphere and four Southern Hemisphere radars are considered. It is shown that all radars exhibit overall consistency with DMSP measurements and a linear fit line to the data has a slope of 0.8 with a tendency for SuperDARN velocities to be smaller. Radar echo range effects and the role of spatial inhomogeneity and temporal variations of the convection pattern are investigated. SuperDARN convection maps were generated for select events for which SuperDARN l-o-s data agree almost ideally with DMSP measurements.<p>Convection maps were obtained using all Northern Hemisphere SuperDARN radars. The full convection vectors were found to be in reasonable agreement with the DMSP ion drifts, although a small deterioration (~10%) was noticed. The overall agreement between SuperDARN and DMSP measurements implies SuperDARN observations are reliable for velocity magnitudes of up to ~1.5 km/s, and SuperDARN radars are suitable instruments for studying extremely fast ionospheric flows. These results also imply that radar measurements can be merged with DMSP measurements into a common data set to provide more reliable convection maps.<p>For the main focus of the thesis, a statistical investigation of the King Salmon radar echoes was performed to determine typical echo characteristics and compare them with data from other SuperDARN radars. It is shown that King Salmon regularly observes high-velocity echoes in the dusk sector at ~21:00 MLT and ~65^0 MLat. Individual events are presented with line-of-sight velocities (observed with the L-shell aligned beams) as high as 2 km/s. Statistically, the enhanced flows are the largest and cover the greatest area in the winter and are the smallest and cover the least area in the summer. Similar fast flows were discovered in the Unwin radar data (in the Southern Hemisphere, lowest magnetic latitude ~57^0) that became available near the completion time of this thesis. It is also shown that statistically, the Stokkseyri radar, which observes in the auroral zone and has a similar azimuthal orientation as King Salmon, does not observe similar high-velocity echoes. Geophysical conditions for the onset of high-velocity King Salmon flows in several individual events are then investigated. It is shown that fast flows are excited in close association with substorm progression near the King Salmon field of view. By comparing SuperDARN data with optical images obtained from the IMAGE satellite and particle data from the DMSP satellites it is shown that velocity enhancement begins at substorm onset and peaks 20-50 minutes later over a range of latitudes including the auroral and sub-auroral regions. During the substorm recovery phase, as bright aurora shifts poleward, exceptionally fast flows can be excited at the equatorial edge of the electron auroral oval and these flows can be classified as sub-auroral polarization stream (SAPS) flows. Variability of SAPS flows and their relationship to auroral oval processes are discussed. Finally, several suggestions for further research are presented.
|
14 |
Study of SAPS-like flows with the King Salmon SuperDARN radarDrayton, Robyn Anne 06 November 2006 (has links)
This thesis has two focuses. The major focus is an investigation of the nature of high-velocity ~2 km/s)ionospheric flows occasionally detected by the King Salmon SuperDARN radar at relatively low magnetic latitudes of 65^0. The second focus is a validation work on the quality of SuperDARN convection measurements. As an alternative convection-monitoring instrument, an ion drift meter onboard the DMSP satellite was chosen for comparison with SuperDARN. This study includes a broad range of velocities of up to ~1.5 km/s. Consideration of very large velocities is fundamentally important for successful research on the major topic of the thesis.<p>The validation work is performed first. Two approaches are undertaken. The first approach considers data at the raw level. SuperDARN F region line-of-sight velocities are directly compared with DMSP cross-track ion drifts in approximately the same directions. More than 200 satellite passes over the fields of view of five Northern Hemisphere and four Southern Hemisphere radars are considered. It is shown that all radars exhibit overall consistency with DMSP measurements and a linear fit line to the data has a slope of 0.8 with a tendency for SuperDARN velocities to be smaller. Radar echo range effects and the role of spatial inhomogeneity and temporal variations of the convection pattern are investigated. SuperDARN convection maps were generated for select events for which SuperDARN l-o-s data agree almost ideally with DMSP measurements.<p>Convection maps were obtained using all Northern Hemisphere SuperDARN radars. The full convection vectors were found to be in reasonable agreement with the DMSP ion drifts, although a small deterioration (~10%) was noticed. The overall agreement between SuperDARN and DMSP measurements implies SuperDARN observations are reliable for velocity magnitudes of up to ~1.5 km/s, and SuperDARN radars are suitable instruments for studying extremely fast ionospheric flows. These results also imply that radar measurements can be merged with DMSP measurements into a common data set to provide more reliable convection maps.<p>For the main focus of the thesis, a statistical investigation of the King Salmon radar echoes was performed to determine typical echo characteristics and compare them with data from other SuperDARN radars. It is shown that King Salmon regularly observes high-velocity echoes in the dusk sector at ~21:00 MLT and ~65^0 MLat. Individual events are presented with line-of-sight velocities (observed with the L-shell aligned beams) as high as 2 km/s. Statistically, the enhanced flows are the largest and cover the greatest area in the winter and are the smallest and cover the least area in the summer. Similar fast flows were discovered in the Unwin radar data (in the Southern Hemisphere, lowest magnetic latitude ~57^0) that became available near the completion time of this thesis. It is also shown that statistically, the Stokkseyri radar, which observes in the auroral zone and has a similar azimuthal orientation as King Salmon, does not observe similar high-velocity echoes. Geophysical conditions for the onset of high-velocity King Salmon flows in several individual events are then investigated. It is shown that fast flows are excited in close association with substorm progression near the King Salmon field of view. By comparing SuperDARN data with optical images obtained from the IMAGE satellite and particle data from the DMSP satellites it is shown that velocity enhancement begins at substorm onset and peaks 20-50 minutes later over a range of latitudes including the auroral and sub-auroral regions. During the substorm recovery phase, as bright aurora shifts poleward, exceptionally fast flows can be excited at the equatorial edge of the electron auroral oval and these flows can be classified as sub-auroral polarization stream (SAPS) flows. Variability of SAPS flows and their relationship to auroral oval processes are discussed. Finally, several suggestions for further research are presented.
|
15 |
Ray Tracing Analysis for the mid-latitude SuperDARN HF radar at Blackstone incorporating the IRI-2007 modelRavindran Varrier, Nitya 04 August 2010 (has links)
The Super Dual Auroral Radar Network (SuperDARN) is an international network of high frequency (HF) coherent scatter radars, employed to detect backscatter from magnetic field aligned plasma irregularities in the ionosphere and to study the near- Earth space weather. Space weather impacts many technological systems including HF communications, Global Positioning System (GPS), and surveillance radars. Variations in the pattern of the backscatter from the ground ("ground scatter") observed by the SuperDARN radars give information regarding the state of the ionosphere. In this thesis, ray tracing simulation of the observed ground scatter pattern for the mid-latitude SuperDARN radar at Blackstone, Virginia is implemented. An existing ray tracing code was modified, to incorporate the IRI-2007 model for electron density. This ray tracing code was used to simulate the ground scatter pattern observed at Blackstone in the year 2009. Simulations were compared with the observed ground scatter to assess our understanding of the ionospheric conditions. The IRI-2007 model is found to be adequate to predict the average ground scatter pattern observed through the year, including the winter anomaly. However, one deficiency with the IRI-2007 model is its inability to predict the sporadic E layer formation in summer and an anomalous evening enhancement in backscatter power observed in some months of the year, described here for the first time. Finally some suggestions are presented for the further improvement of the simulation methods for backscatter prediction. / Master of Science
|
16 |
The Mid-Latitude Ionosphere: Modeling and Analysis of Plasma Wave Irregularities and the Potential Impact on GPS SignalsEltrass, Ahmed Said Hassan Ahmed 26 March 2015 (has links)
The mid-latitude ionosphere is more complicated than previously thought, as it includes many different scales of wave-like structures. Recent studies reveal that the mid-latitude ionospheric irregularities are less understood due to lack of models and observations that can explain the characteristics of the observed wave structures. Since temperature and density gradients are a persistent feature in the mid-latitude ionosphere near the plasmapause, the drift mode growth rate at short wavelengths may explain the mid-latitude decameter-scale ionospheric irregularities observed by the Super Dual Auroral Radar Network (SuperDARN). In the context of this dissertation, we focus on investigating the plasma waves responsible for the mid-latitude ionospheric irregularities and studying their influence on Global Positioning System (GPS) scintillations.
First, the physical mechanism of the Temperature Gradient Instability (TGI), which is a strong candidate for producing mid-latitude irregularities, is proposed. The electro- static dispersion relation for TGI is extended into the kinetic regime appropriate for High- Frequency (HF) radars by including Landau damping, finite gyro-radius effects, and tem- perature anisotropy. The kinetic dispersion relation of the Gradient Drift Instability (GDI) including finite ion gyro-radius effects is also solved to consider decameter-scale waves gen- eration. The TGI and GDI calculations are obtained over a broad set of parameter regimes to underscore limitations in fluid theory for short wavelengths and to provide perspective on the experimental observations.
Joint measurements by the Millstone Hill Incoherent Scatter Radar (ISR) and the Su- perDARN HF radar located at Wallops Island, Virginia have identified the presence of decameter-scale electron density irregularities that have been proposed to be responsible for low-velocity Sub-Auroral Ionospheric Scatter (SAIS) observed by SuperDARN radars. In order to investigate the mechanism responsible for the growth of these irregularities, a time series for the growth rate of both TGI and GDI is developed. The time series is computed for both perpendicular and meridional density and temperature gradients. The growth rate comparison shows that the TGI is the most likely generation mechanism for the observed quiet-time irregularities and the GDI is expected to play a relatively minor role in irregular- ity generation. This is the first experimental confirmation that mid-latitude decameter-scale ionospheric irregularities are produced by the TGI or by turbulent cascade from primary irregularity structures produced from this instability. The quiet- and disturbed-times plasma wave irregularities are compared by investigating co-located experimental observations by the Blackstone SuperDARN radar and the Millstone Hill ISR under various sets of geomagnetic conditions. The radar observations in conjunction with growth rate calculations suggest that the TGI in association with the GDI or a cascade product from them may cause the observations of disturbed-time sub-auroral ionospheric irregularities.
Following this, the nonlinear evolution of the TGI is investigated utilizing gyro-kinetic Particle-In-Cell (PIC) simulation techniques with Monte Carlo collisions for the first time. The purpose of this investigation is to identify the mechanism responsible for the nonlinear saturation as well as the associated anomalous transport. The simulation results indicate that the nonlinear E x B convection (trapping) of the electrons is the dominant TGI sat- uration mechanism. The spatial power spectra of the electrostatic potential and density fluctuations associated with the TGI are also computed and the results show wave cascad- ing of TGI from kilometer scales into the decameter-scale regime of the radar observations. This suggests that the observed mid-latitude decameter-scale ionospheric irregularities may be produced directly by the TGI or by turbulent cascade from primary longer-wavelength irregularity structures produced from this instability.
Finally, the potential impact of the mid-latitude ionospheric irregularities on GPS signals is investigated utilizing modeling and observations. The recorded GPS data at mid-latitude stations are analyzed to study the amplitude and phase fluctuations of the GPS signals and to investigate the spectral index variations due to ionospheric irregularities. The GPS measurements show weak to moderate scintillations of GPS L1 signals in the presence of ionospheric irregularities during disturbed geomagnetic conditions. The GPS spectral indices are calculated and found to be in the same range of the numerical simulations of TGI and GDI. Both simulation results and GPS spectral analysis are consistent with previous in-situ satellite measurements during disturbed periods, showing that the spectral index of mid- latitude density irregularities are of the order 2. The scintillation results along with radar observations suggest that the observed decameter-scale irregularities that cause SuperDARN backscatter, co-exist with kilometer-scale irregularities that cause L-band scintillations. The alignment between the experimental, theoretical, and computational results of this study suggests that turbulent cascade processes of TGI and GDI may cause the observations of GPS scintillations that occur under disturbed conditions of the mid-latitude F-region ionosphere. The TGI and GDI wave cascading lends further support to the belief that the E-region may be responsible for shorting out the F-region TGI and GDI electric fields before and around sunset and ultimately leading to irregularity suppression. / Ph. D.
|
17 |
Morphology and dynamics of storm-time ionospheric density structuresThomas, Evan Grier 04 March 2016 (has links)
Accurate knowledge of the electron density structure of the Earth's upper atmosphere is crucial to forecasting the performance of transionospheric radio signals. For this research, we focus on storm-time structuring in the mid- to high latitude ionosphere where large gradients in electron density can cause severe degradation of communication and navigation signals. We begin in Chapter 2 with a review of the primary data sets and methods used to accomplish the collaborative, multi-instrument studies described in this dissertation. In Chapter 3, we compare observational techniques for tracking polar cap patches during a moderate geomagnetic storm interval. For the first time, we monitor the transportation of patches with high spatial and temporal resolution across the polar cap for 1--2~h using a combination of GPS TEC, all-sky airglow imagers (ASIs), and Super Dual Auroral Radar Network (SuperDARN) HF radar backscatter. Simultaneous measurements from these data sets allow for continuous tracking of patch location, horizontal extent, and velocity even under adverse observational conditions for one or more of the techniques. A focus is placed on the structuring of patches, particularly on the nightside ionosphere as they become wider in the dawn-dusk direction and develop narrow finger-like structures. In Chapter 4, we perform a superposed epoch analysis to characterize the average response of GPS TEC in the North American sector during more than 100 geomagnetic storms over a 13-year interval. For the first time a rigorous approach is used to fully separate storm-time, local time, longitudinal, and seasonal effects at midlatitudes where dense ground receiver coverage is available. The rapid onset of a positive phase is observed across much of the dayside and evening ionosphere followed by a longer-lasting negative phase across all latitudes and local times. Our results show clear seasonal variations in the storm-time TEC, such that summer events tend to be dominated by the negative storm response while winter events exhibit a stronger initial positive phase with minimal negative storm effects. A prominent magnetic declination effect is identified and examined in terms of thermospheric zonal winds pushing plasma upward/downward along magnetic field lines of opposite declination. Finally in Chapter 5 we summarize several co-authored studies which examined various storm-time phenomena utilizing GPS TEC mapping tools developed for this dissertation research, with topics including subauroral polarization stream (SAPS), storm enhanced density (SED), tongue of ionization (TOI), and polar cap patches. / Ph. D.
|
18 |
Influence of Plasma Trails from Hypersonic Events on HF Radar Data CaptureStewart, Evan Wayne 13 June 2024 (has links)
Meteors enter earth's atmosphere with a great amount of kinetic energy. As a result of this atmospheric contact, many meteors will be burned up before they can make it to earth's surface, but not before they cause atmospheric disturbances. The SuperDARN HF radar is designed to measure the ionosphere, typically to create hemisphere wide maps of ionospheric plasma convection, but meteor events are attributed to noise experienced in its data. This thesis first brings together plasma physics understanding with currently available research to clarify the physical behaviors that must be considered to evaluate radar data. The implications of this towards SuperDARN findings is examined in two parts. First, how a meteor's atmospheric interaction is recorded by the SuperDARN HF radar is evaluated. To do this, the physical interaction the meteor has with the atmosphere is examined from the sub-atomic to atmospheric scale. Previous research that used other radars to find these interactions is analyzed to create an understanding of a possible SuperDARN HF radar outcome and provide a new comparison of radars. This understanding is compared against meteor event and location based SuperDARN data to select an optimal event. The second part of the SuperDARN analysis reviews meteor event options based on the time and location of a meteor event meeting defined parameters. Common SuperDARN analysis tools are applied. The data saved by SuperDARN is examined for unique results. Finally, the practicality and meaning of results is considered. / Master of Science / SuperDARN radars emits radio waves that reflect within earth's ionosphere to study how it changes. The ionosphere is a part of earth's upper atmosphere; many of the atoms there are hydrogen and helium. Lower in earth's atmosphere, the sun's energy is just felt as heat that gets dissipated at night or when clouds move in front of the sun. In the thin upper atmosphere, this energy does not transfer as easily, so the atoms ionize to store energy as charge. This can occur lower down in earth's atmosphere, such as when a hypersonic traveling meteor impacts the air with a lot of energy. This ionized trail of atoms behind a meteor is called a meteor trail. Just as the ionosphere can reflect some radio waves, meteor trails can reflect radio waves. It was questionable how well these reflections could be found in SuperDARN data since that radar looks over a large area and meteor trails are comparatively small. This research seeks to answer that. Current research on meteor trails and analysis with radar was analyzed along with a review of the underlying physics concepts involved. Once this background is established, actual SuperDARN radar data is analyzed for a time and place that gives the best chance of seeing some change as a result of a meteor trail.
|
19 |
HF Radar Observations of Inter-Annual variations in Mid-Latitude Mesospheric WindsMalhotra, Garima 15 June 2016 (has links)
The equatorial Quasi Biennial Oscillation (QBO) is known to be an important source of inter-annual variability at mid and high latitudes in both hemispheres. Coupling between QBO and the polar vortex has been extensively studied over the past few decades, however, less is known about QBO influences in the mid-latitude mesosphere. One reason for this is the relative lack of instrumentation available to study mesospheric dynamics at mid-latitudes. In this study, we have used the mid-latitude SuperDARN HF radar at Saskatoon (52.16 N, -106.53 E) to study inter-annual variation in mesospheric winds. The specific aim was to determine whether or not a Quasi Biennial signature could be identified in the Saskatoon mesosphere, and if so, to understand its relationship with the equatorial stratospheric QBO. To achieve this goal, a technique has been developed which extracts meteor echoes from SuperDARN near-range gates and then applies least-squares fitting across all radar beam directions to calculate hourly averages of the zonal and meridional components of the mesospheric neutral wind. Subsequent analysis of 13 years (2002-2014) of zonal wind data produced using this technique indicates that there is indeed a significant QBO signature present in Saskatoon mesospheric winds during late winter (Jan-Feb). This mesospheric QBO signature is in opposite phase with the equatorial stratospheric QBO, such that when QBO (at 50 hPa) is in its easterly (westerly) phase, the late winter winds in Saskatoon mesosphere become more (less) westerly. To further examine the source of the signature, we also analyzed winds in the Saskatoon stratosphere between 5 hPa and 70 hPa using the ECMWF ERA-Interim reanalysis data set, and found that the late winter stratospheric winds become less (more) westerly when QBO is easterly (westerly). This QBO signature in the mid-latitude stratospheric winds is essentially the same as that observed for the polar vortex in previous studies but it is opposite in phase to the mid-latitude mesospheric QBO. We therefore conclude that filtering of gravity waves through QBO-modulated stratospheric winds plays a major role in generating the mesospheric QBO signature we have identified in the Saskatoon HF radar data. When the Saskatoon stratospheric winds are anomalously westward during easterly QBO, the gravity waves having westward momentum might be filtered out, depositing a net eastward momentum in the mesosphere as they propagate upwards. This would result in increased westerly mesospheric winds at Saskatoon. The opposite would happen when the equatorial QBO is westerly. / Master of Science
|
20 |
Polar Cap Ionospheric Oscillations in the ULF Frequency Range Observed With SuperDARN HF Radar2013 August 1900 (has links)
Pc3-4 waves are recorded as geomagnetic pulsations with periods of 6-100s. They are generated at the bowshock and propagate to mid and auroral latitudes as Alfvén waves along closed magnetic field lines. At these latitudes Pc3-4 waves have been studied on the ground using magnetometers and in the ionosphere using HF radar. These waves have also been observed using magnetometers at polar latitudes even though there is no known propagation mechanism to the “open” field lines of the polar cap regions.
In this work we used PolarDARN stations at Rankin Inlet and Inuvik to attempt the first study of Pc3-4 waves in the polar cap regions using radar. In ground scatter data, Doppler velocity oscillations with frequencies in the Pc3-4 range were found to be a common daytime occurrence. The oscillations are spatially coherent and in phase along the beam’s line of sight, matching lower latitude observations. However, upon further study it became apparent that the characteristics of the oscillations are different from those known for Pc3-4 waves.
The observed oscillations have a diurnal trend that shows peaks in activity at 7:00 and 14:00MLT, where Pc3-4 oscillations have a diurnal peak at 10:30-11:00 MLT. In addition, poor coherence was observed between oscillations in radar and ground magnetic field variations at the nearby Taloyoak magnetometer. Further confounding the problem, we found that although the oscillations were coherent along the line-of-sight of the radar, poor coherence is observed when comparing
oscillations in different beams separated by similar spatial scales. This finding counters both the spatial coherence observed along the beam’s line of sight and the spatial coherence of Pc3-4 waves
at auroral latitudes. We conclude that it is unlikely that the observed oscillations are the result of Pc3-4 ULF waves. We instead propose that the observed Doppler velocity oscillations are caused by a change in the ionization along the ray’s path due to auroral particle precipitation.
|
Page generated in 0.0255 seconds