Spelling suggestions: "subject:"supercomplex"" "subject:"supercomplexo""
1 |
Dynamic changes in cytochrome c oxidase assembly and organizationRömpler, Katharina Maria 17 August 2016 (has links)
No description available.
|
2 |
Functions of REP27 and the low molecular weight proteins PsbX and PsbW in repair and assembly of photosystem IIGarcia Cerdan, Jose Gines January 2009 (has links)
Oxygenic photosynthesis is the major producer of both oxygen and organic compounds on earth and takes place in plants, green algae and cyanobacteria. The thylakoid membranes are the site of the photosynthetic light reactions that involve the concerted action of four major protein complexes known as photosystem II (PSII), cytochrome b6f complex, ATP synthase and photosystem I (PSI). The function of PSII is of particular interest as it performs the light–driven water splitting reaction driving the photosynthetic electron transport. My thesis addressed different aspects of PSII assembly and the functions of its low molecular weight PSII subunits PsbX and PsbW. Photosynthesis in green algae and higher plants is controlled by the nucleus. Many proteins of nuclear origin participate in the regulation of the efficient assembly of the photosynthetic protein complexes. In this investigation we have identified one of these nuclear encoded auxiliary proteins of photosystem II, REP27, which participates in the assembly of the D1 reaction center protein and repair of photodamaged PSII in the green algae Chlamydomonas reinhardtii. Interestingly, PSII is specially enriched in Low Molecular Weight (LMW) subunits that have masses less than 10kDa. These proteins account for more than the half of the PSII subunits. Several questions remains poorly understood regarding the LMW: Which is their evolutionary origin? What function do they perform in the protein complex? Where are they located in the protein structure? In this investigation the functions of two of these LMW subunits (PsbX and PsbW) have been studied using antisense inhibition and T-DNA knockout mutant plants in Arabidopsis thaliana. Deficiency of the PsbX protein leads to impaired accumulation and functionality of PSII. Characterization of PsbW knock-out plants show that PsbW participates in stabilization of the macro-organization of PSII and the peripheral antenna (Light Harvesting Complex, LHCII) in the grana stacks of the chloroplast, also known as PSII-LHCII supercomplexes.
|
3 |
Role of Cyclic Electron Flow (CEF) and Photosystem I (PSI) Supercomplex Formation During Acclimation to Long-Term Salinity Stress in Green Algae: A Comparative StudyKalra, Isha 16 July 2021 (has links)
No description available.
|
4 |
Study of protein in the respiratory chain by IR spectroscopy and electrochemistry / Etude des interactions des protéines dans la chaîne respiratoire par spectroscopie IR et par électrochimieNeehaul, Yashvin 13 September 2012 (has links)
Le domaine de la bioénergie moléculaire concerne le transfert et le stockage d’énergie dans les cellules biologiques. Ce projet s’articule autour de la respiration et plus précisément le mécanisme de pompage de sodium et de protons, et son couplage au transfert d’électrons. Premièrement, nous nous sommes intéressés au pompage d’ions sodium par la NADH : quinone oxidoreductase de la bactérie Vibrio cholerae. L’importance de flavines spécifiques et des résidus acides dans le transfert de sodium ont été démontrée. Par la suite, l’interaction entre protéines, notamment le cytochrome c552 et le fragment CuA de l’oxidase de type ba3 de l’organisme Thermus thermophilus a été étudié. Une réorganisation structurelle induit par le transfert d’électron a été démontrée par la spectroscopie IRTF différentielle. Enfin, dans la dernière partie de ce travail, l’interaction au sein du supercomplex bc1-aa3 de la chaîne respiratoire du Corynebacterium glutamicum a été analysée. / The field of molecular bioenergetics deals with the energy transduction in biological cells. In this project, respiration and more specifically proton and sodium pumping enzymes and their coupling to electron transfer have been in focus. First we have been interested in the Na+-pumping NADH:quinone reductase from Vibrio cholerae which is the entry site of electrons in the respiratory chain of several pathogens. The role of specific flavin cofactors and amino acids involved in Na+ transfer has been shown in a combined IR spectroscopic and electrochemical approach. The interaction between proteins, namely the cytochrome c552 and the CuA fragment from the terminal ba3 oxidase from the organism Thermus thermophilus was then investigated. Structural reorganization during electron transfer was revealed by IR spectroscopy. Finally, in the third part of the project the interaction within the bc1-aa3 supercomplex from the respiratory chain from Corynebacterium glutamicum was analyzed.
|
5 |
Study of protein in the respiratory chain by IR spectroscopy and electrochemistryNeehaul, Yashvin 13 September 2012 (has links) (PDF)
The field of molecular bioenergetics deals with the energy transduction in biological cells. In this project, respiration and more specifically proton and sodium pumping enzymes and their coupling to electron transfer have been in focus. First we have been interested in the Na+-pumping NADH:quinone reductase from Vibrio cholerae which is the entry site of electrons in the respiratory chain of several pathogens. The role of specific flavin cofactors and amino acids involved in Na+ transfer has been shown in a combined IR spectroscopic and electrochemical approach. The interaction between proteins, namely the cytochrome c552 and the CuA fragment from the terminal ba3 oxidase from the organism Thermus thermophilus was then investigated. Structural reorganization during electron transfer was revealed by IR spectroscopy. Finally, in the third part of the project the interaction within the bc1-aa3 supercomplex from the respiratory chain from Corynebacterium glutamicum was analyzed.
|
6 |
Organisation structurale et fonctionnelle du métabolisme énergétique dans les cellules musculaires striées en conditions physiologiques et physiopathologiques / Structural and functional organization of energy metabolism in striated muscle cells under physiological and pathophysiologogical conditionsBagur Quetglas, Rafaela 28 September 2015 (has links)
La stabilité métabolique des cellules cardiaques est dépendante d'une organisation fonctionnelle qui favorise le transfert des liaisons phosphate depuis les sites de synthèse de l'ATP (mitochondries) jusqu'aux sites d'utilisation de l'énergie. Au niveau mitochondrial, cette fonction est principalement assurée par l'Interactosome Mitochondrial, comprenant les complexes respiratoires, l'ATP synthasome fonctionnellement couplé à la créatine kinase mitochondriale et le pore de la membrane mitochondriale externe VDAC qui régit la diffusion des nucléotides adényliques sous le contrôle de protéines du cytosquelette. Il est communément admis que la situation d'ischémie/reperfusion (IR) du myocarde affecte l'organisation intracellulaire des cardiomyocytes, les phosphorylations oxydatives (OxPhos), ainsi que le transfert de l'énergie cellulaire.L'objectif de ce travail était d'étudier les mécanismes de régulation de la fonction mitochondriale par les interactions entre la tubuline BII et la membrane mitochondriale externe (MME) d'une part et l'organisation de supercomplexes respiratoires (SCR) d'autre part. Différents types de muscles striés (cardiaque et squelettique) ont été utilisés pour étudier le lien entre la tubuline BII et la perméabilité de la MME pour les nucléotides adényliques. De plus, le rôle de la tubuline BII et de l'organisation des SCR ont été étudiés dans la situation physiopathologique de l'IR cardiaque.Dans les cardiomyocytes, comme dans les cellules issues de muscles squelettiques oxydatifs de rats adultes, la tubuline BII est colocalisée avec les mitochondries et la perméabilité de la MME pour l'ADP est faible. A l'aide du système pyruvate kinase/phosphoénolpyruvate, destiné à piéger l'ADP extramitochondrial, nous avons montré que l'affinité apparente d'OxPhos pour l'ADP est directement liée à la perméabilité de la MME. Ainsi, dans le muscle cardiaque comme dans les muscles squelettiques oxydatifs, un fort Km apparent pour l'ADP est associé à une faible perméabilité de la MME à l'ADP et à une forte expression de tubuline BII, présente sous une forme non-polymérisée. A l'inverse, dans les muscles glycolytiques, la très faible teneur en tubuline BII non-polymérisée est associée à une forte perméabilité de la MME aux nucléotides adényliques (faible Km apparent pour l'ADP).Les effets de l'ischémie (20 ou 45 minutes) et de la reperfusion cardiaque (30 minutes) ont été étudiés sur un modèle de coeur isolé perfusé de rat. Les principaux résultats sont que la séquence d'IR induit un réarrangement de la tubuline BII, associé à une réduction du Km apparent pour l'ADP, une baisse du contrôle de la respiration par la créatine et une diminution de la capacité d'OxPhos. Les modifications observées étaient dépendantes de la durée de l'ischémie et variables d'un cœur à l'autre. De plus, le groupe soumis à 20 minutes d'ischémie était caractérisé par la présence de SCR incluant le complexe I et l'absence de perte de cytochrome c (suggérant l'absence d'apoptose cellulaire). A l'inverse, 45 minutes d'ischémie suivies de reperfusion ont conduit à une perte de cytochrome c et à un remodelage de l'ultrastructure mitochondriale, sans modification de l'organisation des SCR.En conclusion, nos résultats soulignent l'importance des interactions mitochondrie-cytosquelette, et plus particulièrement celles impliquant la tubuline BII, dans la compartimentation intracellulaire des nucléotides adényliques et les transferts d'énergie dans les muscles striés oxydatifs. Par ailleurs, la séquence d'IR myocardique induit une désorganisation de la tubuline BII, qui contribue à la dysfonction mitochondriale. Enfin, l'absence de réorganisation des SCR quand la lésion d'IR est irréversible (45 minutes d'ischémie) suggère que le réarrangement des SCR observé après 20 minutes d'ischémie pourrait être l'un des mécanismes adaptatifs mis en jeu pour prévenir la dysfonction mitochondriale à la suite d'une séquence d'IR. / Cardiac metabolic stability is highly dependent on the intracellular functional organization which favors compartmentalized phosphoryl flux transfer between sites of mitochondrial ATP synthesis and sites of ATP hydrolysis (mainly myofibrillar ATPases). At the level of mitochondria, this function is provided by Mitochonrial Interactosom (IM) which includes respiratory complexes, ATP Synthasom coupled functionally to Mitochondrial Creatine Kinase (MtCK) and Voltage-Dependent Anion Channel (VDAC) regulating ATP/ADP diffusion through its interaction with cytoskeleton proteins. Cardiac ischemia/reperfusion (IR) injury alters intracellular organization, oxidative phosphorylation (OxPhos) and compartmentalized intracellular phosphoryl flux transfer.The aim of this work was to study the regulation of mitochondrial activity by B tubulin II interaction with MOM and by respiratory supercomplex (RSC) organization, under physiological conditions as well as in ischemia/reperfusion in striated muscles. For this purpose, different types of striated muscles (cardiac and skeletal) were used for studying the link between B tubulin II and MOM permeability to adenine nucleotides. In addition, the role of B tubulin II and RSC organization was studied in the pathophysiological context of cardiac ischemia/reperfusion.In cardiac and oxidative skeletal muscles from adult Wistar rats, B tubulin II is colocalized with mitochondria and associated with low MOM permeability to ADP. Using pyruvate kinase and phosphoenolpyruvate trapping system for ADP, we show that the apparent affinity of OxPhos for ADP can be directly linked to the permeability of MOM. High apparent Km for ADP in cardiac and oxidative skeletal muscle is associated with low MOM permeability to ADP and high expression of non-polymerized B tubulin II. Very low expression of non-polymerized B tubulin II in glycolytic muscles is associated with high MOM permeability for adenine nucleotides (low apparent Km for ADP).The effect of the IR-injury was studied by subjecting isolated and perfused Wistar rat hearts to total ischemia (for 20 min and 45 min) followed by 30 min of reperfusion (I20R and I45R groups, respectively). The IR-injury induced intracellular rearrangement of B tubulin II was associated with decreased apparent Km for ADP, creatine-control of respiration and reduced OxPhos capacity. Observed changes were dependent on the duration of ischemia and were heterogeneously present across hearts. Additionally, in the I20R group we evidenced an increase in the content of the RSC embodying complex I in the absence of cytochrome c release (evidencing the absence of apoptosis). Forty five minutes of ischemia followed by reperfusion resulted in increased cytochrome c release and mitochondrial cristae remodeling without alteration of RSC organization.The results of this study highlight the importance of cytoskeleton-mitochondria interactions, and particularly that of B tubulin II, for adenine nucleotide intracellular compartmentalization and phosphoryl flux transfer in oxidative striated muscles. In addition, cardiac IR was shown to induce B tubulin II disorganization contributing to mitochondrial dysfunction. The absence of the RSC reorganization after irreversible IR injury (45 minutes of ischemia) suggests that the rearrangement of RSC observed after 20 minutes of ischemia could be an adaptive mechanism to overcome the IR-induced alterations of mitochondrial function.
|
7 |
Bezpečnost Slovenska z pohledu kodaňské školy / Security of Slovakia from perspective of Copenhagen SchoolPavúk, Ján January 2008 (has links)
The diploma thesis captures the contemporary security situation of Slovakia, identifies security problems by which it feels threatened, then goes on to point out whom and what Slovakia wants to protect and which strategy it plans to use in order to do that. At the same time it identifies the main insecurities of EU as a whole and those of Russia. These two powers are seen to play a major role in formation of relationships of amity and enmity, of cooperation and hostility in European regional security supercomplex of which, Slovakia is inseparable part. To describe and conduct analysis, author applies theories and analytical tools formulated by Copenhagen School. Most used were analytical frameworks and concepts of securitization, regional security complexes and sectoral approach to security.
|
8 |
Mitochondrial ROS direct the differentiation of murine pluripotent P19 cellsPashkovskaia, Natalia, Gey, Uta, Rödel, Gerhard 13 December 2018 (has links)
ROS are frequently associated with deleterious effects caused by oxidative stress. Despite the harmful effects of non-specific oxidation, ROS also function as signal transduction molecules that regulate various biological processes, including stem cell proliferation and differentiation. Here we show that mitochondrial ROS level determines cell fate during differentiation of the pluripotent stem cell line P19. As stem cells in general, P19 cells are characterized by a low respiration activity, accompanied by a low level of ROS formation. Nevertheless, we found that P19 cells contain fully assembled mitochondrial electron transport chain supercomplexes (respirasomes), suggesting that low respiration activity may serve as a protective mechanism against ROS. Upon elevated mitochondrial ROS formation, the proliferative potential of P19 cells is decreased due to longer S phase of the cell cycle. Our data show that besides being harmful, mitochondrial ROS production regulates the differentiation potential of P19 cells: elevated mitochondrial ROS level favours trophoblast differentiation, whereas preventing neuron differentiation. Therefore, our results suggest that mitochondrial ROS level serves as an important factor that directs differentiation towards certain cell types while preventing others.
|
Page generated in 0.0328 seconds