• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 10
  • 10
  • 10
  • 6
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Inflammation-Dependent Oxidative Stress Metabolites as a Hallmark of Amyotrophic Lateral Sclerosis

Xiong, Luyang, McCoy, Michael, Komuro, Hitoshi, West, Xiaoxia Z., Yakubenko, Valentin, Gao, Detao, Dudiki, Tejasvi, Milo, Amanda, Chen, Jacqueline, Podrez, Eugene A., Trapp, Bruce, Byzova, Tatiana V. 01 January 2022 (has links)
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, with poor prognosis and no cure. Substantial evidence implicates inflammation and associated oxidative stress as a potential mechanism for ALS, especially in patients carrying the SOD1 mutation and, therefore, lacking anti-oxidant defense. The brain is particularly vulnerable to oxidation due to the abundance of polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), which can give rise to several oxidized metabolites. Accumulation of a DHA peroxidation product, CarboxyEthylPyrrole (CEP) is dependent on activated inflammatory cells and myeloperoxidase (MPO), and thus marks areas of inflammation-associated oxidative stress. At the same time, generation of an alternative inactive DHA peroxidation product, ethylpyrrole, does not require cell activation and MPO activity. While absent in normal brain tissues, CEP is accumulated in the central nervous system (CNS) of ALS patients, reaching particularly high levels in individuals carrying a SOD1 mutation. ALS brains are characterized by high levels of MPO and lowered anti-oxidant activity (due to the SOD1 mutation), thereby aiding CEP generation and accumulation. Due to DHA oxidation within the membranes, CEP marks cells with the highest oxidative damage. In all ALS cases CEP is present in nearly all astrocytes and microglia, however, only in individuals carrying a SOD1 mutation CEP marks >90% of neurons, thereby emphasizing an importance of CEP accumulation as a potential hallmark of oxidative damage in neurodegenerative diseases.
12

Markers of Elevated Oxidative Stress in Oligodendrocytes Captured From the Brainstem and Occipital Cortex in Major Depressive Disorder and Suicide

Chandley, Michelle J., Szebeni, Attila, Szebeni, Katalin, Wang-Heaton, Hui, Garst, Jacob, Stockmeier, Craig A., Lewis, Nicole H., Ordway, Gregory A. 13 July 2022 (has links)
Major depressive disorder (MDD) and suicide have been associated with elevated indices of oxidative damage in the brain, as well as white matter pathology including reduced myelination by oligodendrocytes. Oligodendrocytes highly populate white matter and are inherently susceptible to oxidative damage. Pathology of white matter oligodendrocytes has been reported to occur in brain regions that process behaviors that are disrupted in MDD and that may contribute to suicidal behavior. The present study was designed to determine whether oligodendrocyte pathology related to oxidative damage extends to brain areas outside of those that are traditionally considered to contribute to the psychopathology of MDD and suicide. Relative telomere lengths and the gene expression of five antioxidant-related genes, SOD1, SOD2, GPX1, CAT, and AGPS were measured in oligodendrocytes laser captured from two non-limbic brain areas: occipital cortical white matter and the brainstem locus coeruleus. Postmortem brain tissues were obtained from brain donors that died by suicide and had an active MDD at the time of death, and from psychiatrically normal control donors. Relative telomere lengths were significantly reduced in oligodendrocytes of both brain regions in MDD donors as compared to control donors. Three antioxidant-related genes (SOD1, SOD2, GPX1) were significantly reduced and one was significantly elevated (AGPS) in oligodendrocytes from both brain regions in MDD as compared to control donors. These findings suggest that oligodendrocyte pathology in MDD and suicide is widespread in the brain and not restricted to brain areas commonly associated with depression psychopathology.
13

Therapeutic suppression of mutant SOD1 by AAV9-mediated gene therapy approach in Amyotrophic Lateral Sclerosis

Likhite, Shibi B. January 2014 (has links)
No description available.
14

Some aspects of molecular mechanisms of xenobiotics' hepatotoxicity and hepatoprotection : Modulatory roles of natural polyphenols

Lekic, Nataša January 2013 (has links)
Background & Aims: Oxidative stress and apoptosis are proposed mechanisms of cellular injury in studies of xenobiotic hepatotoxicity. The aim of this work is to find early signal markers of drug-induced injury of the liver by focusing on select antioxidant/oxidant and apoptotic genes. As well, to address the relationship between conventional liver dysfunction markers and the measured mRNA and protein expressions in the D-galactosamine/lipopolysaccharide and tert-butylhydroperoxide hepatotoxicity models. Furthermore, potential hepatoprotective capabilities of antioxidant polyphenols quercetin and curcumin were evaluated in relation to its modulation of the oxidative stress and apoptotic parameters in the given xenobiotic hepatotoxicity models. Methods: Biochemical markers testing the hepatic function included aminotransferases (ALT, AST) and bilirubin. Measurements of TBARS and conjugated dienes were used to assess lipoperoxidation. Plasma levels of catalase and reduced glutathione were used as indicators of the oxidative status of the cell. Real time PCR was used to analyse the mRNA expressions of the inducible nitric oxide synthase (NOS-2), heme oxygenase-1 (HO-1), superoxide dismutase (SOD-1), glutathione peroxidase (Gpx-1), caspase 3 (Casp3), BH3 interacting domain death agonist (Bid) and Bcl-2...
15

Optical Analysis of [Ca<sup>2+</sup>]i and Mitochondrial Signaling Pathways: Implications for the Selective Vulnerability of Motoneurons in Amyotrophic Lateral Sclerosis (ALS) / Optische Analysen von [Ca<sup>2+</sup>]i und mitochondrialen Signalwegen: Untersuchungen zur selektiven Verwundbarkeit von Motoneuronen in der amyotrophen Lateralsklerose (ALS)

Jaiswal, Manoj Kumar 23 January 2008 (has links)
No description available.

Page generated in 0.0451 seconds