• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Development, and Production of Therapeutic Immunoglobulins for Inhibition of Carboxyethylpyrrole-Induced Angiogenesis

Cui, Yalun 21 February 2014 (has links)
No description available.
2

Biological and Pathophysiological Roles of End-Products of DHA Oxidation

Yakubenko, Valentin P., Byzova, Tatiana V. 01 April 2017 (has links)
© 2016 Elsevier B.V. Background Polyunsaturated fatty acids (PUFA) are known to be present and/or enriched in vegetable and fish oils. Among fatty acids, n-3 PUFA are generally considered to be protective in inflammation-related diseases. The guidelines for substituting saturated fatty acids for PUFAs have been highly publicized for decades by numerous health organizations. Recently, however, the beneficial properties of n-3 PUFA are questioned by detailed analyses of multiple randomized controlled clinical trials. The reported heterogeneity of results is likely due not only to differential effects of PUFAs on various pathological processes in humans, but also to the wide spectrum of PUFA's derived products generated in vivo. Scope of review The goal of this review is to discuss the studies focused on well-defined end-products of PUFAs oxidation, their generation, presence in various pathological and physiological conditions, their biological activities and known receptors. Carboxyethylpyrrole (CEP), a DHA-derived oxidized product, is especially emphasized due to recent data demonstrating its pathophysiological significance in many inflammation-associated diseases, including atherosclerosis, hyperlipidemia, thrombosis, macular degeneration, and tumor progression. Major conclusions CEP is a product of radical-based oxidation of PUFA that forms adducts with proteins and lipids in blood and tissues, generating new powerful ligands for TLRs and scavenger receptors. The interaction of CEP with these receptors affects inflammatory response, angiogenesis, and wound healing. General significance The detailed understanding of CEP–mediated cellular responses may provide a basis for the development of novel therapeutic strategies and dietary recommendations.
3

Modification of extracellular matrix by the product of DHA oxidation promotes retention of macrophages and progression of chronic inflammation

Casteel, Jared, Keever, Kasey R, Ardell, Christopher L, Williams, David L, Gao, Detao, Podrez, Eugene A, Byzova, Tatiana V, Yakubenko, Valentin P 25 April 2023 (has links)
Oxidation of polyunsaturated fatty acids contributes to different aspects of the inflammatory response due to the variety of products generated. Specifically, the oxidation of DHA produces the end-product, carboxyethylpyrrole (CEP), which forms a covalent adduct with proteins via an ϵ-amino group of lysines. Previously, we found that CEP formation is dramatically increased in inflamed tissue and CEP-modified albumin and fibrinogen became ligands for αDß2 (CD11d/CD18) and αMß2 (CD11b/CD18) integrins. In this study, we evaluated the effect of extracellular matrix (ECM) modification with CEP on the adhesive properties of M1-polarized macrophages, particularly during chronic inflammation. Using digested atherosclerotic lesions and in vitro oxidation assays, we demonstrated the ability of ECM proteins to form adducts with CEP, particularly, DHA oxidation leads to the formation of CEP adducts with collagen IV and laminin, but not with collagen I. Using integrin αDß2-transfected HEK293 cells, WT, and αD-/- mouse M1- polarized macrophages, we revealed that CEP-modified proteins support stronger cell adhesion and spreading when compared with natural ECM ligands such as collagen IV, laminin, and fibrinogen. Integrin αDß2 is critical for M1 macrophage adhesion to CEP. Based on biolayer interferometry results, the isolated αD I-domain demonstrates markedly higher binding affinity to CEP compared to the “natural” αDß2 ligand fibrinogen. Finally, the presence of CEP-modified proteins in a 3D fibrin matrix significantly increased M1 macrophage retention. Therefore, CEP modification converts ECM proteins to αDß2- recognition ligands by changing a positively charged lysine to negatively charged CEP, which increases M1 macrophage adhesion to ECM and promotes macrophage retention during detrimental inflammation, autoimmunity, and chronic inflammation.
4

Oxidative Damage and Age Related Macular Degeneration

Renganathan, Kutralanathan January 2008 (has links)
No description available.
5

Biomarkers for Age-Related Macular Degeneration

Gu, Jiayin January 2009 (has links)
No description available.
6

PART I: FORMATION, PROTEIN MODIFICATION, AND CELLULAR METABOLISM OF 4-HYDROXY-7-OXOHEPT-5-ENOIC ACID LACTONE (HOHA-LACTONE)PART II: DETECTION AND BIOLOGICAL ACTIVITIES OF CARBOXYETHYLPYRROLE (CEP)-PHOSPHATIDYL-ETHANOLAMINE AND METABOLISM OF CEP-LYSINE

Wang, Hua 21 February 2014 (has links)
No description available.
7

Docosahexaenoate Oxidation in the Progression of Glioblastoma: Mechanistic Studies and Evaluation of a Therapeutic Antibody

Tomko, Nicholas Daniel 01 February 2019 (has links)
No description available.
8

Inflammation-Dependent Oxidative Stress Metabolites as a Hallmark of Amyotrophic Lateral Sclerosis

Xiong, Luyang, McCoy, Michael, Komuro, Hitoshi, West, Xiaoxia Z., Yakubenko, Valentin, Gao, Detao, Dudiki, Tejasvi, Milo, Amanda, Chen, Jacqueline, Podrez, Eugene A., Trapp, Bruce, Byzova, Tatiana V. 01 January 2022 (has links)
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, with poor prognosis and no cure. Substantial evidence implicates inflammation and associated oxidative stress as a potential mechanism for ALS, especially in patients carrying the SOD1 mutation and, therefore, lacking anti-oxidant defense. The brain is particularly vulnerable to oxidation due to the abundance of polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), which can give rise to several oxidized metabolites. Accumulation of a DHA peroxidation product, CarboxyEthylPyrrole (CEP) is dependent on activated inflammatory cells and myeloperoxidase (MPO), and thus marks areas of inflammation-associated oxidative stress. At the same time, generation of an alternative inactive DHA peroxidation product, ethylpyrrole, does not require cell activation and MPO activity. While absent in normal brain tissues, CEP is accumulated in the central nervous system (CNS) of ALS patients, reaching particularly high levels in individuals carrying a SOD1 mutation. ALS brains are characterized by high levels of MPO and lowered anti-oxidant activity (due to the SOD1 mutation), thereby aiding CEP generation and accumulation. Due to DHA oxidation within the membranes, CEP marks cells with the highest oxidative damage. In all ALS cases CEP is present in nearly all astrocytes and microglia, however, only in individuals carrying a SOD1 mutation CEP marks >90% of neurons, thereby emphasizing an importance of CEP accumulation as a potential hallmark of oxidative damage in neurodegenerative diseases.

Page generated in 0.0451 seconds