• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 399
  • 64
  • 43
  • 27
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 630
  • 630
  • 285
  • 222
  • 213
  • 150
  • 138
  • 132
  • 103
  • 96
  • 93
  • 89
  • 80
  • 78
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Self-supervised Representation Learning via Image Out-painting for Medical Image Analysis

January 2020 (has links)
abstract: In recent years, Convolutional Neural Networks (CNNs) have been widely used in not only the computer vision community but also within the medical imaging community. Specifically, the use of pre-trained CNNs on large-scale datasets (e.g., ImageNet) via transfer learning for a variety of medical imaging applications, has become the de facto standard within both communities. However, to fit the current paradigm, 3D imaging tasks have to be reformulated and solved in 2D, losing rich 3D contextual information. Moreover, pre-trained models on natural images never see any biomedical images and do not have knowledge about anatomical structures present in medical images. To overcome the above limitations, this thesis proposes an image out-painting self-supervised proxy task to develop pre-trained models directly from medical images without utilizing systematic annotations. The idea is to randomly mask an image and train the model to predict the missing region. It is demonstrated that by predicting missing anatomical structures when seeing only parts of the image, the model will learn generic representation yielding better performance on various medical imaging applications via transfer learning. The extensive experiments demonstrate that the proposed proxy task outperforms training from scratch in six out of seven medical imaging applications covering 2D and 3D classification and segmentation. Moreover, image out-painting proxy task offers competitive performance to state-of-the-art models pre-trained on ImageNet and other self-supervised baselines such as in-painting. Owing to its outstanding performance, out-painting is utilized as one of the self-supervised proxy tasks to provide generic 3D pre-trained models for medical image analysis. / Dissertation/Thesis / Masters Thesis Computer Science 2020
282

Positive unlabeled learning applications in music and healthcare

Arjannikov, Tom 10 September 2021 (has links)
The supervised and semi-supervised machine learning paradigms hinge on the idea that the training data is labeled. The label quality is often brought into question, and problems related to noisy, inaccurate, or missing labels are studied. One of these is an interesting and prevalent problem in the semi-supervised classification area where only some positive labels are known. At the same time, the remaining and often the majority of the available data is unlabeled, i.e., there are no negative examples. Known as Positive-Unlabeled (PU) learning, this problem has been identified with increasing frequency across many disciplines, including but not limited to health science, biology, bioinformatics, geoscience, physics, business, and politics. Also, there are several closely related machine learning problems, such as cost-sensitive learning and mixture proportion estimation. This dissertation explores the PU learning problem from the perspective of density estimation and proposes a new modular method compatible with the relabeling framework that is common in PU learning literature. This approach is compared with two existing algorithms throughout the manuscript, one from a seminal work by Elkan and Noto and a current state-of-the-art algorithm by Ivanov. Furthermore, this thesis identifies two machine learning application domains that can benefit from PU learning approaches, which were not previously seen that way: predicting length of stay in hospitals and automatic music tagging. Experimental results with multiple synthetic and real-world datasets from different application domains validate the proposed approach. Accurately predicting the in-hospital length of stay (LOS) at the time of admission can positively impact healthcare metrics, particularly in novel response scenarios such as the Covid-19 pandemic. During the regular steady-state operation, traditional classification algorithms can be used for this purpose to inform planning and resource management. However, when there are sudden changes to the admission and patient statistics, such as during the onset of a pandemic, these approaches break down because reliable training data becomes available only gradually over time. This thesis demonstrates the effectiveness of PU learning approaches in such situations through experiments by simulating the positive-unlabeled scenario using two fully-labeled publicly available LOS datasets. Music auto-tagging systems are typically trained using tag labels provided by human listeners. In many cases, this labeling is weak, which means that the provided tags are valid for the associated tracks, but there can be tracks for which a tag would be valid but not present. This situation is analogous to PU learning with the additional complication of being a multi-label scenario. Experimental results on publicly available music datasets with tags representing three different labeling paradigms demonstrate the effectiveness of PU learning techniques in recovering the missing labels and improving auto-tagger performance. / Graduate
283

Automatic Prediction of Human Age based on Heart Rate Variability Analysis using Feature-Based Methods

Al-Mter, Yusur January 2020 (has links)
Heart rate variability (HRV) is the time variation between adjacent heartbeats. This variation is regulated by the autonomic nervous system (ANS) and its two branches, the sympathetic and parasympathetic nervous system. HRV is considered as an essential clinical tool to estimate the imbalance between the two branches, hence as an indicator of age and cardiac-related events.This thesis focuses on the ECG recordings during nocturnal rest to estimate the influence of HRV in predicting the age decade of healthy individuals. Time and frequency domains, as well as non-linear methods, are explored to extract the HRV features. Three feature-based methods (support vector machine (SVM), random forest, and extreme gradient boosting (XGBoost)) were employed, and the overall test accuracy achieved in capturing the actual class was relatively low (lower than 30%). SVM classifier had the lowest performance, while random forests and XGBoost performed slightly better. Although the difference is negligible, the random forest had the highest test accuracy, approximately 29%, using a subset of ten optimal HRV features. Furthermore, to validate the findings, the original dataset was shuffled and used as a test set and compared the performance to other related research outputs.
284

Classification d’objets au moyen de machines à vecteurs supports dans les images de sonar de haute résolution du fond marin / Object classification using support vector machines in high resolution sonar seabed imagery

Rousselle, Denis 28 November 2016 (has links)
Cette thèse a pour objectif d'améliorer la classification d'objets sous-marins dans des images sonar haute résolution. En particulier, il s'agit de distinguer les mines des objets inoffensifs parmi une collection d'objets ressemblant à des mines. Nos recherches ont été dirigées par deux contraintes classiques en guerre de la mine : d'une part, le manque de données et d'autre part, le besoin de lisibilité des décisions. Nous avons donc constitué une base de données la plus représentative possible et simulé des objets dans le but de la compléter. Le manque d'exemples nous a mené à utiliser une représentation compacte, issue de la reconnaissance de visages : les Structural Binary Gradient Patterns (SBGP). Dans la même optique, nous avons dérivé une méthode d'adaptation de domaine semi-supervisée, basée sur le transport optimal, qui peut être facilement interprétable. Enfin, nous avons développé un nouvel algorithme de classification : les Ensemble of Exemplar-Maximum Excluding Ball (EE-MEB) qui sont à la fois adaptés à des petits jeux de données mais dont la décision est également aisément analysable / This thesis aims to improve the classification of underwater objects in high resolution sonar images. Especially, we seek to make the distinction between mines and harmless objects from a collection of mine-like objects. Our research was led by two classical constraints of the mine warfare : firstly, the lack of data and secondly, the need for readability of the classification. In this context, we built a database as much representative as possible and simulated objects in order to complete it. The lack of examples led us to use a compact representation, originally used by the face recognition community : the Structural Binary Gradient Patterns (SBGP). To the same end, we derived a method of semi-supervised domain adaptation, based on optimal transport, that can be easily interpreted. Finally, we developed a new classification algorithm : the Ensemble of Exemplar-Maximum Excluding Ball (EE-MEB) which is suitable for small datasets and with an easily interpretable decision function
285

FAULT DETECTION FOR SMALL-SCALE PHOTOVOLTAIC POWER INSTALLATIONS : A Case Study of a Residential Solar Power System

Brüls, Maxim January 2020 (has links)
Fault detection for residential photovoltaic power systems is an often-ignored problem. This thesis introduces a novel method for detecting power losses due to faults in solar panel performance. Five years of data from a residential system in Dalarna, Sweden, was applied on a random forest regression to estimate power production. Estimated power was compared to true power to assess the performance of the power generating systems. By identifying trends in the difference and estimated power production, faults can be identified. The model is sufficiently competent to identify consistent energy losses of 10% or greater of the expected power output, while requiring only minimal modifications to existing power generating systems.
286

A contemporary machine learning approach to detect transportation mode - A case study of Borlänge, Sweden

Golshan, Arman January 2020 (has links)
Understanding travel behavior and identifying the mode of transportation are essential for adequate urban devising and transportation planning. Global positioning systems (GPS) tracking data is mainly used to find human mobility patterns in cities. Some travel information, such as most visited location, temporal changes, and the trip speed, can be easily extracted from GPS raw tracking data. GPS trajectories can be used as a method to indicate the mobility modes of commuters. Most previous studies have applied traditional machine learning algorithms and manually computed data features, making the model error-prone. Thus, there is a demand for developing a new model to resolve these methods' weaknesses. The primary purpose of this study is to propose a semi-supervised model to identify transportation mode by using a contemporary machine learning algorithm and GPS tracking data. The model can accept GPS trajectory with adjustable length and extracts their latent information with LSTM Autoencoder. This study adopts a deep neural network architecture with three hidden layers to map the latent information to detect transportation mode. Moreover, different case studies are performed to evaluate the proposed model's efficiency. The model results in an accuracy of 93.6%, which significantly outperforms similar studies.
287

Supervised Learning models with ice hockey data

Álvarez Robles, Enrique Josué January 2019 (has links)
The technology developments of the last years allow measuring data in almost every field and area nowadays, especially increasing the potential for analytics in branches in which not much analytics have been done due to complicated data access before. The increased number of interest in sports analytics is highly connected to the better technology now available for visual and physical sensors on the one hand and sports as upcoming economic topic holding potentially large revenues and therefore investing interest on the other hand. With the underlying database, precise strategies and individual performance improvements within the field of professional sports are no longer a question of (coach)experience but can be derived from models with statistical accuracy. This thesis aims to evaluate if the available data together with complex and simple supervised machine learning models could generalize from the training data to unseen situations by evaluating performance metrics. Data from games of the ice hockey team of Linköping for the season 2017/2018 is processed with supervised learning algorithms such as binary logistic regression and neural networks. The result of this first step is to determine the strategies of passes by considering both, attempted but failed and successful shots on goals during the game. For that, the original, raw data set was aggregated to game-specific data. After having detected the distinct strategies, they are classified due to their rate of success.
288

New Computational Methods for Literature-Based Discovery

Ding, Juncheng 05 1900 (has links)
In this work, we leverage the recent developments in computer science to address several of the challenges in current literature-based discovery (LBD) solutions. First, LBD solutions cannot use semantics or are too computational complex. To solve the problems we propose a generative model OverlapLDA based on topic modeling, which has been shown both effective and efficient in extracting semantics from a corpus. We also introduce an inference method of OverlapLDA. We conduct extensive experiments to show the effectiveness and efficiency of OverlapLDA in LBD. Second, we expand LBD to a more complex and realistic setting. The settings are that there can be more than one concept connecting the input concepts, and the connectivity pattern between concepts can also be more complex than a chain. Current LBD solutions can hardly complete the LBD task in the new setting. We simplify the hypotheses as concept sets and propose LBDSetNet based on graph neural networks to solve this problem. We also introduce different training schemes based on self-supervised learning to train LBDSetNet without relying on comprehensive labeled hypotheses that are extremely costly to get. Our comprehensive experiments show that LBDSetNet outperforms strong baselines on simple hypotheses and addresses complex hypotheses.
289

A NEURAL-NETWORK-BASED CONTROLLER FOR MISSED-THRUST INTERPLANETARY TRAJECTORY DESIGN

Paul A Witsberger (12462006) 26 April 2022 (has links)
<p>The missed-thrust problem is a modern challenge in the field of mission design. While some methods exist to quantify its effects, there still exists room for improvement for algorithms which can fully anticipate and plan for a realistic set of missed-thrust events. The present work investigates the use of machine learning techniques to provide a robust controller for a low-thrust spacecraft. The spacecraft’s thrust vector is provided by a neural network controller which guides the spacecraft to the target along a trajectory that is robust to missed thrust, and the controller does not need to re-optimize any trajectories if it veers off its nominal course. The algorithms used to train the controller to account for missed thrust are supervised learning and neuroevolution. Supervised learning entails showing a neural network many examples of what inputs and outputs should look like, with the network learning over time to duplicate the patterns it has seen. Neuroevolution involves testing many neural networks on a problem, and using the principles of biological evolution and survival of the fittest to produce increasingly competitive networks. Preliminary results show that a controller designed with these methods provides mixed results, but performance can be greatly boosted if the controller’s output is used as an initial guess for an optimizer. With an optimizer, the success rate ranges from around 60% to 96% depending on the problem.</p> <p><br></p> <p>Additionally, this work conducts an analysis of a novel hyperbolic rendezvous strategy which was originally conceived by Dr. Buzz Aldrin. Instead of rendezvousing on the outbound leg of a hyperbolic orbit (traveling away from Earth), the spacecraft performs a rendezvous while on the inbound leg (traveling towards Earth). This allows for a relatively low Delta-v abort option for the spacecraft to return to Earth if a problem arose during rendezvous. Previous work that studied hyperbolic rendezvous has always assumed rendezvous on the outbound leg because the total Delta-v required (total propellant required) for the insertion alone is minimal with this strategy. However, I show that when an abort maneuver is taken into consideration, inserting on the inbound leg is both lower Delta-v overall, and also provides an abort window which is up to a full day longer.</p>
290

Bilinear Gaussian Radial Basis Function Networks for classification of repeated measurements

Sjödin Hällstrand, Andreas January 2020 (has links)
The Growth Curve Model is a bilinear statistical model which can be used to analyse several groups of repeated measurements. Normally the Growth Curve Model is defined in such a way that the permitted sampling frequency of the repeated measurement is limited by the number of observed individuals in the data set.In this thesis, we examine the possibilities of utilizing highly frequently sampled measurements to increase classification accuracy for real world data. That is, we look at the case where the regular Growth Curve Model is not defined due to the relationship between the sampling frequency and the number of observed individuals. When working with this high frequency data, we develop a new method of basis selection for the regression analysis which yields what we call a Bilinear Gaussian Radial Basis Function Network (BGRBFN), which we then compare to more conventional polynomial and trigonometrical functional bases. Finally, we examine if Tikhonov regularization can be used to further increase the classification accuracy in the high frequency data case.Our findings suggest that the BGRBFN performs better than the conventional methods in both classification accuracy and functional approximability. The results also suggest that both high frequency data and furthermore Tikhonov regularization can be used to increase classification accuracy.

Page generated in 0.0743 seconds