Spelling suggestions: "subject:"suprachiasmatic"" "subject:"suparachiasmatic""
41 |
Novel Mechanisms Impacting MAPK and CREB Signaling in the Mammalian Suprachiasmatic NucleusWheaton, Kelin LaRue 08 October 2018 (has links)
No description available.
|
42 |
Zebrafish Epithalamus as a Model System for Studying Circadian Rhythms and Left-Right AsymmetryLu, Po-Nien 19 June 2012 (has links)
No description available.
|
43 |
The Transcriptome of the Suprachiasmatic Nucleus and its Response to Photic StimuliPorterfield, Veronica Marie 01 December 2008 (has links)
No description available.
|
44 |
Phase Regulation of the SCN Circadian Clock: Serotonergic and Neuropeptidergic MechanismsKaur, Gagandeep 06 November 2009 (has links)
No description available.
|
45 |
Functional Organization of Central and Peripheral Circadian OscillatorsKo, Caroline Hee-Jeung 24 September 2009 (has links)
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus has long been considered a master circadian pacemaker that drives rhythms in physiology and behavior in mammals. The recent discovery of self-sustained and cell-autonomous circadian oscillators in peripheral tissues has challenged this position. This dissertation tested the general hypothesis that the SCN has properties that distinguish it from other oscillators, thereby positioning it atop a circadian hierarchy. The general approach was to compare the consequences of altering the molecular circadian clock on tissue-autonomous rhythmicity in mice. In the first experiments, the role of the SCN as a master clock was tested by manipulating the expression of a circadian gene in the brain. Specifically, the expression of the short period tau mutation of casein kinase-1-epsilon (CK1ε) was controlled in an anatomically- and a temporally-specific manner via a tetracycline transactivator regulatory system. This inducible expression of CK1εtau affected the period of activity rhythms when expressed in the SCN, but did not affect the tissue-autonomous rhythmic properties in the peripheral tissues. Second, real-time bioluminescence imaging of tissues from PER2::LUCIFERASE mice revealed that period and phase of different circadian oscillators were tissue specific. Various circadian gene mutations (Cry1-/-, Cry2-/-, Cry1-/-;Cry2-/-, Clock∆19/∆19) produced little difference in rhythmic properties between the SCN and peripheral oscillators, although Cry1-/- SCN had more robust and persistent rhythms compared with the periphery. Third, the loss of Bmal1, which produces behavioral arrhythmicity, eliminated rhythms in the peripheral tissues, but not in the SCN. Bmal1-/- SCN rhythms were highly variable in period and amplitude, fitting a stochastic, but not a deterministic model of rhythm generation. Unlike mutations in other circadian genes, rhythmicity was completely abolished in single SCN neurons in Bmal1-/- mice, indicating that rhythms in Bmal1-/- SCN tissue are a property of the tissue organization rather than an averaging of single-cell autonomous rhythms. The SCN, therefore, has a unique anatomical organization that contributes to long-term stability and temporal organization of the circadian hierarchy.
|
46 |
Plasticité structurale du noyau suprachiasmatique associée à la synchronisation photique de l'horloge circadienne / Structural plasticity of the suprachiasmatic nucleus associated with photic synchronization of the circadian clockGirardet, Clémence 21 June 2010 (has links)
Bâti sur des données ayant identifié le noyau suprachiasmatique de l'hypothalamus (NSC), composante centrale de l'horloge circadienne des mammifères, comme une structure à fortes potentialités de plasticité structurale, ce travail de thèse a visé à déterminer si la synchronisation photique de l’horloge pouvait mettre en jeu une telle plasticité. Par une analyse ultrastructurale, nous démontrons que le cycle jour/nuit s’accompagne de remaniements neurono-gliaux du NSC affectant différentiellement les neurones à VIP, principales cibles d'intégration des messages rétiniens, et les neurones à vasopressine. Ces remaniements seraient bien liés à la synchronisation photique de l’horloge dans la mesure où, dans le NSC, l’expression rythmique de la GFAP, une protéine du cytosquelette des astrocytes, est abolie sous obscurité constante, tandis que les fluctuations journalières des glucocorticoïdes circulants, connues pour moduler la synchronisation photique, sont apparues être impliquées dans la régulation rythmique de cette plasticité. Grâce au développement d’une méthode d’analyse quantitative en imagerie confocale, nous montrons une augmentation diurne de la densité d’innervation synaptique, glutamatergique et non glutamatergique, sélective des neurones à VIP. Des données en microscopie électronique indiquent que ce remodelage synaptique n’implique pas les synapses GABAergiques, au moins au niveau dendritique des neurones à VIP. Ce travail a permis d’identifier formellement la composante centrale de l’horloge circadienne, le NSC, comme une structure capable d’adapter, de manière rapide et réversible, son architecture gliale et synaptique aux exigences fonctionnelles. / This thesis work was based on data identifying the suprachiasmatic nucleus of the hypothalamus (SCN), the central component of the mammalian circadian clock, as a structure with a high potential for structural plasticity. It was aimed at determining whether the photic synchronization of the clock may involve such a plasticity.Using an exhaustive ultrastructural analysis, we showed that the SCN underwent day/night rearrangements of its neuronal-glial network, which affected differentially the VIP (vasoactive intestinal peptide)-synthesizing neurons, the main targets for retinal signals, and the vasopressin-synthesizing neurons. The rearrangements appeared to be linked with photic synchronization as the rhythmic expression of GFAP, an astrocytic cytosqueletal protein, was abolished in SCN under constant darkness. Moreover we found the daily fluctuations of circulating glucocorticoids, known as modulators of photic synchronization of the clock, to be involved in the rhythmic regulation of SCN structural plasticity.Thanks to the development of a quantitative analysis method in confocal imaging, we showed a selective increase at daytime in the glutamatergic and non-glutamatergic synapses made on the VIP neurons. Complementary electron-microscopic data indicated that the synaptic remodeling did not involve GABAergic synapses, at least at the dendritic level of VIP neurons.This work permitted to formally identify the central component of the circadian clock, the SCN, as a structure able to adapt, rapidly and reversibly, its glial and synaptic architecture to functional needs.
|
47 |
Caracterização química do núcleo supraquiasmático do primata Cebus apella. / Neurochemical characterization of Cebus apella suprachiasmatic nucleus.Rocha, Vanderlei Amadeu da 19 April 2011 (has links)
O núcleo supraquiasmático (NSQ), principal relógio biológico circadiano em mamíferos, contem população variada de neurônios produtores de diferentes substâncias neuroativas. Em roedores, as pesquisas avançaram na investigação dos mecanismos moleculares e substâncias neuroativas, que em conjunto determinam a função do relógio biológico. Entretanto, há poucas informações em espécies diurnas, especialmente primatas sobre esta organização intrínseca que não raramente apresenta diferenças nas espécies estudadas. O presente estudo busca identificar a natureza química dos principais grupamentos neuronais do NSQ no primata diurno Cebus apella, relacionando a localização destes grupamentos com as três principais projeções aferentes deste núcleo. Os resultados obtidos evidenciam organização complexa do NSQ, caracterizada por grupos celulares contendo vasopressina, polipeptídeo intestinal vasoativo e marcador de diferenciação neural com localização semelhante a de roedores e células que contém calbindina e calretinina com localização diferente da de roedores. / The suprachiasmatic nucleus (SCN), the main circadian clock in mammals, contains diverse population of neurons of different neuroactive substances. In rodents, there has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock. However, there is little information in diurnal species, especially primates about this organization seldom has no intrinsic differences in the species studied. This study seeks to identify the chemical nature of the main groups of SCN neurons in diurnal primate Cebus apella, relating the location of these groups with the three major afferent projections from this nucleus. The results show complex organization of the SCN, characterized by cell groups containing vasopressin, vasoactive intestinal polypeptide and neuronal differentiation marker in the same location and rodent cells that contain calbindin and calretinin with location different from that of rodents.
|
48 |
Projeções hipotalâmicas do núcleo supraquiasmático com base na distribuição de fibras imunorreativas para VIP e AVP no Cebus apella. / Suprachiasmatic nucleus projections for hypothalamic areas according to VIP and AVP immunoreactivity in the Cebus apella monkey.Campos, Leila Maria Guissoni 26 November 2013 (has links)
O núcleo hipotalâmico supraquiasmático (SCh), apresenta caracterização neuroquímica com duas subpopulações principais de células, a produtora de polipeptídeo intestinal vasoativo (VIP) e argenina vasopressina (AVP). As fibras IR AVP e VIP oriundas do SCh apresentam características morfológicas específicas que possibilitam o rastreamento a longas distâncias dentro do hipotálamo. No presente estudo buscamos mapear os terminais IR VIP e AVP nas áreas hipotalâmicas do primata Cebus apella utilizando a imuno-histoquímica, e fazer a identificação das áreas hipotalâmicas recipientes do SCh, utilizando o mapeamento da distribuição das fibras IR associado à análise morfológica destas duas substâncias neuroativas. As fibras IR VIP e AVP com características do SCh foram identificadas em porções anteriores como hipotálamo anterior, área pré-óptica, área hipotalâmica lateral, SPZV, até porções mais caudais, porção retroquiasmática, área tuberal. Os resultados indicam um padrão similar de distribuição de fibras IR VIP e AVP nas áreas do hipotálamo e também em áreas descritas como recipientes das projeções do SCh, quando comparado com outras espécies como roedores descritos na literatura. / The suprachiasmatic nucleus (SCN) of the hypothalamus, contains a variety of different neurons that tend to form two major subpopulations within the nucleus, the vasoactive intestinal peptide (VIP) and vasopressin (VP). The immunoreactive (IR) fibers derived from the VIP and VP IR cells of the SCN present morphological characteristics that allow their specific tracking in long distances within the hypothalamus. In the present investigation we aimed map VIP and VP IR terminals in hypothalamic areas of the primate Cebus apella using immunohistochemistry, and to do identification of hypothalamic recipient areas from SCN using the mapping distribution of fibers IR associated with morphological analysis of these two neuroactive substances. VIP and VP IR fibers with characteristics from SCN were identified in the rostral anterior hypothalamic area and medial preoptic area, laterally to the lateral hypothalamic area, and more caudally in SPZV and retrochiasmatic tuberal area. The results indicate that there is a similarity in the pattern of distribution of VIP and VP fibers in the hypothalamic areas and also in areas recipients from SCN projections when compared with nocturnal rodent species described in the literature.
|
49 |
Functional Organization of Central and Peripheral Circadian OscillatorsKo, Caroline Hee-Jeung 24 September 2009 (has links)
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus has long been considered a master circadian pacemaker that drives rhythms in physiology and behavior in mammals. The recent discovery of self-sustained and cell-autonomous circadian oscillators in peripheral tissues has challenged this position. This dissertation tested the general hypothesis that the SCN has properties that distinguish it from other oscillators, thereby positioning it atop a circadian hierarchy. The general approach was to compare the consequences of altering the molecular circadian clock on tissue-autonomous rhythmicity in mice. In the first experiments, the role of the SCN as a master clock was tested by manipulating the expression of a circadian gene in the brain. Specifically, the expression of the short period tau mutation of casein kinase-1-epsilon (CK1ε) was controlled in an anatomically- and a temporally-specific manner via a tetracycline transactivator regulatory system. This inducible expression of CK1εtau affected the period of activity rhythms when expressed in the SCN, but did not affect the tissue-autonomous rhythmic properties in the peripheral tissues. Second, real-time bioluminescence imaging of tissues from PER2::LUCIFERASE mice revealed that period and phase of different circadian oscillators were tissue specific. Various circadian gene mutations (Cry1-/-, Cry2-/-, Cry1-/-;Cry2-/-, Clock∆19/∆19) produced little difference in rhythmic properties between the SCN and peripheral oscillators, although Cry1-/- SCN had more robust and persistent rhythms compared with the periphery. Third, the loss of Bmal1, which produces behavioral arrhythmicity, eliminated rhythms in the peripheral tissues, but not in the SCN. Bmal1-/- SCN rhythms were highly variable in period and amplitude, fitting a stochastic, but not a deterministic model of rhythm generation. Unlike mutations in other circadian genes, rhythmicity was completely abolished in single SCN neurons in Bmal1-/- mice, indicating that rhythms in Bmal1-/- SCN tissue are a property of the tissue organization rather than an averaging of single-cell autonomous rhythms. The SCN, therefore, has a unique anatomical organization that contributes to long-term stability and temporal organization of the circadian hierarchy.
|
50 |
An?lise citoarquitet?nica dos componentes do sistema de temporiza??o circadiana do sagui (Calithrix jacchus), comparada com a inerva??o das suas principais afer?nciasNascimento, Rayane Bartira Silva do 03 August 2011 (has links)
Made available in DSpace on 2014-12-17T15:37:05Z (GMT). No. of bitstreams: 1
RayaneBSN_DISSERT.pdf: 693632 bytes, checksum: a22430e8639b4b9e576ca8573f8e7d9d (MD5)
Previous issue date: 2011-08-03 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The suprachiasmatic nucleus (SCN) of the anterior hypothalamus, together with the
intergeniculate leaflet (IGL) of the thalamus are considered the central components of the
circadian timing system (CTS) of mammals. This system is responsible for the generation and
regulation of circadian rhythms by establishing a temporal organization of physiological
processes and behaviors. The neuronal specific nuclear protein (NeuN) has been widely used
as a neuronal marker in several studies. Since glial fibrillary acidic protein (GFAP) is a
component of intermediate filaments found in the cytoplasm of astrocytes and is commonly
used as a specific marker for these cells. This study aims to identify, in the marmoset, the
NeuN immunoreactive neurons and glial cells immunoreactive to GFAP, as well as map the
major route of photic synchronization of the STC, retinohypothalamic tract (RHT), and
identify the indirect pathway to the SCN and pregeniculate nucleus (PGN) - structure
homologous to IGL rodents, using immunohistochemical and cytoarchitectonic techniques.
Observed in SCN the presence of neurons immunoreactive to NeuN and terminals
immunoreactive subunit b of cholera toxin (CTb), neuropeptide Y (NPY) and serotonin (5-
HT). In the PGN noted the presence of the NeuN and NPY immunoreactive neurons and the
immunoreactive terminals CTb and 5-HT. Astrocytes are present throughout the extent of the
SCN and the PGN this New World primate / O n?cleo supraquiasm?tico (NSQ) do hipot?lamo anterior, juntamente com o folheto
intergeniculado (FIG) do t?lamo s?o considerados os componentes centrais do sistema de
temporiza??o circadiana (STC) de mam?feros. Tal sistema ? respons?vel pela gera??o e
regula??o dos ritmos circadianos estabelecendo uma organiza??o temporal dos processos
fisiol?gicos e comportamentos. A prote?na nuclear neuronal espec?fica (NeuN) tem sido
amplamente utilizada como um marcador neuronal em diversos estudos. J? a prote?na ac?dica
fibrilar glial (GFAP) ? um componente dos filamentos intermedi?rios encontrada no
citoplasma dos astr?citos e ? comumente usada como um marcador espec?fico para essas
c?lulas. Este trabalho tem como objetivo identificar, no sagui, neur?nios imunorreativos a
NeuN e c?lulas gliais imunorreativas a GFAP, bem como mapear a principal via de
sincroniza??o f?tica do STC, o trato retinohipotal?mico (TRH), e identificar as vias indiretas
para o NSQ e n?cleo pr?-geniculado (NPG) estrutura hom?loga ao FIG dos roedores,
utilizando t?cnicas citoarquitet?nica e imunoistoqu?mica. Observamos no NSQ a presen?a de
neur?nios imunorreativos a NeuN, bem como terminais imunorreativos a subunidade b da
toxina col?rica (CTb), a neuropept?do Y (NPY) e a serotonina (5-HT). J? no NPG notamos a
presen?a de neur?nios imunorreativos a NeuN e a NPY e terminais imunorreativos a CTb e a
5-HT. Os astr?citos est?o presentes em toda a extens?o do NSQ e do NPG deste primata do
Novo Mundo
|
Page generated in 0.0659 seconds