• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 8
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reologia de organogéis baseados em glicosídeos aromáticos / Rheology of organogels based on aromatic glycosides

Simões, Thiago Augusto, 1985- 06 May 2014 (has links)
Orientador: Edvaldo Sabadini / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-27T01:55:14Z (GMT). No. of bitstreams: 1 Simoes_ThiagoAugusto_M.pdf: 2543594 bytes, checksum: 7e559c17b32f95f43db82455a855492b (MD5) Previous issue date: 2014 / Resumo: Materiais nanoestruturados apresentam-se em muitas formas diferentes. Um grupo de compostos ainda pouco investigado é o grupo dos organogéis, especialmente aqueles cuja estrutura tridimensional de rede é baseada na auto-organização de compostos orgânicos de baixa massa molecular, capazes de promover a gelificação no meio em que se encontram. São os chamados "Low Molecular Organic Gelators ¿ LMOG". Esses materiais termorreversíveis consistem de uma pequena quantidade de LMOG e um líquido orgânico. O presente trabalho visa esclarecer os mecanismos de auto-organização dos LMOG na escala supramolecular. Os LMOG estudados são derivados em moléculas que podem ser divididas em três partes. A parte central é constituída por um anel fenílico. Em uma das partes está ligado um grupo glicosídeo, e em outro ponto do anel uma cadeia alquílica. Procurou-se estudar as características estruturais e cinéticas de géis formados em um solvente aromático (para-xileno) e em um solvente formador de ligações de hidrogênio (n-propanol). Avaliaram-se, então, os efeitos relacionados com o balanço polar-apolar da molécula de LMOG, analisando os géis com 8, 4 e 3 unidades metilênicas da cadeia alquílica, bem como os efeitos de solvatação. A investigação dos fenômenos foi realizada utilizando a reologia rotatória e oscilatória nos regimes diluído e concentrado, aliada às técnicas de microscopia eletrônica de varredura (MEV), difratografia de raios-X e difusão dinâmica da luz (DDL) / Abstract: Nanostructured materials exist in many different ways. A group of compounds which has not been much investigated is the group of organogels, especially those whose three-dimensional network structure is based on the self-assembly of low molecular weight organic compounds. They promote gelation in the medium in which they are. These compounds are titled as "Low Molecular Mass Organic Gelator - LMOG" and they form thermoreversible materials constituted by a small amount of a LMOG and an organic liquid. The work presented in this dissertation aimed to clarify the mechanisms of self-assembly in a supramolecular scale. The LMOG molecules studied have a phenyl ring with a glycoside group bonded in one side and an alkyl chain bonded in the other part of the aromatic ring. The kinetic and structural characteristics of the gel formed in an aromatic solvent (para-xylene) and in a solvent donator of hydrogen bonding (propanol) were investigated. Therefore, the effects emerged from the polar-nonpolar balance of the LMGO molecule with 8, 4 and 4 methyl groups in the alkyl chain, as well as the solvation effect. The investigations were performed using the rotational and oscillatory rheology in dilute and concentrated regimes combined with the techniques of Scanning Electron Microscope (SEM), X-RAY diffraction and Dynamic Light Scattering (DLS) / Mestrado / Físico-Química / Mestre em Química
2

Studies on Porous Soft Materials Based on Linked Rhodium-Organic Cuboctahedra / ロジウム含有金属錯体立方八面体の集合体に基づく多孔性ソフトマテリアルに関する研究

WANG, ZAOMING 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23926号 / 工博第5013号 / 新制||工||1782(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 古川 修平, 教授 生越 友樹, 教授 浜地 格 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
3

Bile Acid based Supramolecular Gels, Soft Hybrid Materials and their Applications

Maity, Mitasree January 2016 (has links) (PDF)
Chapter 1. Supramolecular Gels and their Applications Supramolecular gels are viscoelastic materials composed of a solid like three dimensional fibrillary network that is embedded in a liquid. Supramolecular gels are derived from low molecular weight compounds (typically MW < 3000). In the 1990s, the investigations on gels were mainly focused on designing new gelator molecules. However, during the last decade, research focus shifted towards designing functional gels and their applications. As a result of extensive work in this area, gels have been found to have varied applications in the templated synthesis of inorganic nanomaterials, hybrid materials, light harvesting systems, as responsive system and sensors, and also in drug delivery, tissue engineering etc. This chapter gives an introduction to supramolecular hydrogels/organogels and relevant bile acid chemistry touching upon the gelation properties of the bile acid derivatives. Diverse applications of the supramolecular gels are also illustrated with several examples. Scheme 1. Various applications of functional supramolecular gels Chapter 2. Bile Acid derived novel Hydrogelators Part 1. Hydrogelation of Bile acid protected Amino acids and Hybrid Materials Hydrogels from low molecular weight molecules have significant importance in biomedical applications. In this chapter, we report injectable hydrogel formation from bile acid conjugates of various amino acids. Hydrogel formation was found to be dependent on multiple factors such as bile acid backbone structure, linkage between the bile acid and the amino acid, pH etc. Single crystal structures of lithocholyl phenylalanine, lithocholyl-glycine, lithocholyl-L valine and lithocholyl-L alanine were also determined. Finally, the hydrogel frameworks were utilized to produce hybrid materials with Gold and ZnO nanoparticles. Scheme 2. (a) Crystal structure of LC-LF-OH gelator molecule, (b) photograph of gel, (c) SEM and (d) AFM image of LC-LF-OH xerogel Part 2. Hydrogelation of bile acid-dipeptide conjugates and in situ synthesis of silver and gold nanoparticles in the hydrogel matrix Fabricating supramolecular hydrogels with embedded metal nanostructures are important for the design of novel hybrid nanocomposite materials for diverse applications such as bio sensing and chemo sensing platforms, catalytic and antibacterial functional materials etc. Supramolecular self-assembly of bile acid-dipeptide conjugates have led to the formation of new supramolecular hydrogels. Gelation of these molecules depends strongly on the hydrophobic character of the bile acids. Ag+ and Au3+ salts were incorporated in the hydrogels, and photo reduction and chemical reduction led to the in situ generation of Ag and Au NPs in these supramolecular hydrogels without the addition of any external stabilizing agent. The color, size and shape of silver nanoparticles formed by photo reduction depended on the amino acid residue on the side chain. Furthermore, the hydrogel-Ag nanocomposite was tested for its antimicrobial activity. Scheme 3. Bile acid based dipeptide hydrogelators and soft hybrid materials Chapter 3. Sonogels of bile salts of In(III): use in the formation of self-templated indium sulfide nanostructures In this chapter, facile hydrogel formation by Indium(III) cholate and deoxy cholate are reported. When In(III) solution was added to aqueous solutions of sodium cholate and sodium deoxy cholate and sonicated, the mixtures formed gels. The gels thus obtained were translucent/turbid and thermos irreversible. Rheological measurements showed that all of them could be classified as viscoelastic soft solids. Scanning electron microscopy and atomic force microscopy showed typical entangled three dimensional fibrous networks. The In-Ch hydrogel were further used to prepare nanostructured In2S3 in which the cholate units possibly acted as a surfactant to confine the growth of the Nano flakes. Scheme 4. In-Ch hydrogel (Photograph and SEM image of In-Ch gel) Chapter 4. Palladium-Hydrogel Nanocomposite for C-C Coupling Reactions Supported metallic nanoparticles are important composite materials owing to their enormous potential for applications in various fields. This chapter describes the in situ formation of palladium nanoparticles in a calcium-cholate (Ca-Ch) hydrogel by reduction with sodium cyan borohydride. The hydrogel matrix appeared to assist the controlled growth as well as stabilization of palladium nanoparticles. The palladium nanoparticle/Ca-Ch hydrogel hybrid was characterized by scanning and transmission electron microscopy, atomic force microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. Furthermore, PdNP/Ca-Ch hybrid xerogel was shown to act as an active catalyst for Suzuki reaction under aqueous aerobic conditions, up to 4 cycles. This PdNP/Ca-Ch xerogel retained its catalytic activities on storage for several months. Scheme 5. Palladium-hydrogel nanocomposite for C-C coupling reactions in water Chapter 5. Sensitization of Terbium/Europium in self-assembled cholate hydrogel: An approach towards the detection of amine vapours "Luminescent" lanthanides have intrinsic low molar absorptivity, although this problem can be addressed by complexing the lanthanide ion with suitable chelating ligands which improve the luminescence properties drastically. However the design of such systems often involves careful planning and laborious synthetic steps. It is therefore desirable to have a simpler way to sensitize lanthanides with high efficiency. It was observed in our group that trivalent lanthanides formed hydrogels on the addition of sodium cholate. This chapter describes the discovery of the several biphenyl derivatives (such as 4-biphenylcarbaxaldehyde, 4-acetylbiphenyl) for sensitization of Tb(III) and Eu(III) in lanthanide hydrogels. Sensitization of Tb(III) and Eu(III) were observed by doping was characterized by scanning and transmission electron microscopy, atomic force microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. Furthermore, PdNP/Ca-Ch hybrid xerogel was shown to act as an active catalyst for Suzuki reaction under aqueous aerobic conditions, up to 4 cycles. This PdNP/Ca-Ch xerogel retained its catalytic activities on storage for several months. Scheme 6. Schematic representation of the sensitization process (the arrangement of themolecules in the gel fiber is arbitrary)(For figures pl refer the abstract pdf file)
4

A Study of Supramolecular Gels and Self Assembly of Novel Bile Acid Conjugates

Ramesh, K January 2013 (has links) (PDF)
Chapter 1: Functional and Responsive Supramolecular Gels In this chapter ‘supramolecular gels’ derived from small organic molecules with molecular mass of typically less than 2000 daltons are discussed. Representative examples of various low molecular weight gelators based on their natural availability and also divergent functionalities are mentioned (Scheme 1). Scheme 1 Advances in the recent years have been very rapid in the field of supramolecular chemistry of gels giving rise to ‘Tunable responsive gels’. Control of the gel property in a reversible fashion has been the highlight of responsive gels. A few of the gels which are responsive towards various stimuli such as pH, photoirradiation, cations, anions, neutral species have been discussed. Advances and scope of supramolecular gels in various applications have also been mentioned in detail with respective examples. Utilities of supramolecular gels in synthesis of nanostructures, in biology and medicine, enzyme recognition, catalysis etc are discussed. (Scheme 2). Chapter 2: Charge transfer triggered organogels of bis(bile acid)anthracene conjugates and 2,4.7-trinitrofluorenone. In this chapter the study involves the synthesis of a special class of anthracene based steroidal derivatives. The appending of two amphiphilic bile acid units imparts a unique hydrophobic/ hydrophilic balance on the chromophore. The 2,3-didecyloxyanthracene (DDOA) was reported to be a gelator of various organic solvents but none of the three bile acid derivatives of anthracene synthesized was a gelator on its own. It was also observed that dialkoxy (propyl, heptyl, decyl) derivatives of anthracene formed strong charge-transfer gels in the presence of 2,4,7-trinitrofluorenone (TNF). The addition of electron deficient TNF to the steroidal derivatives of anthracene resulted in the gelation of some specific organic solvents. The driving force behind the gel formation resulted from the charge-transfer (CT) interaction between the electron rich anthracene and electron deficient fluorenone. Figure 1. Chemical structures of 2,3-bis(bile acid)anthracenes and TNF (centre), a scanning electronic microscopy image of xerogels prepared from bis(deoxycholyl)anthracene and TNF (left) and a photograph of the gel of bis(deoxycholyl)anthracene and TNF in n-octanol. Thermochromic property (during sol to gel phase transition), absorption and variable temperature fluorescence measurements supported CT interaction. Thermal stability studies and dynamic rheology experiments confirmed that CT gels were thermally most stable and mechanically stronger with equi-molar amounts of the two components. Stiffness values obtained from rheological experiments also suggested that the gels were viscoelastic solids. Chapter 3(A): Tb(III) sensitization in an organogel matrix: Selective luminescence quenching by an aromatic nitro derivative In this chapter the discovery of metallo organogel formation by mixing methanolic solutions of Tb(OAc)3 and sodium deoxycholate (NaDCh) has been explored. Sensitization of Tb3+ was observed by doping micromolar quantities of 2,3-dihydroxynaphthalene (DHN). Mechanical properties of Tb3+-DCh gels were investigated by rheology at three different ratios of Tb3+ and DCh. It was observed that increasing in the Tb3+ to DCh ratio increased the mechanical property of the gels. Time delayed emission spectra were recorded with increasing concentration of DHN and luminescence increase was noticed in a linear fashion. Importance of gel matrix was demonstrated by measuring the Tb3+ luminescence at fixed concentration (5 mM) with/without DHN in the solution and gel media. Figure 2:: Schematic representation of Tb3+ sensitization by DHN. Photograph (right)) of the Tb3++-DCh (5/15 mM) gels with (a) 50 µM DHHN (b) No DHHN under UVV (365 nm). Sensitization by an electron rich chromophore created interest in us to dope relatively electron deficient compounds into the gel matrix for possible quenching off Tb3+-luminescence. Among the electron deficient analytes screened included 1,5-difluro-2,4-diinitrobenzenne (DFDNB)), 2,4 dinitrophenol (DNPPh), p-nitrobenzaldehydde (p-NB), 2,4,6-trinitrootoluene (TTNT) and 22,4,7¬trinitrofluuorenone (TTNF). Microscopy studies such as AFM, TEMM and SEMM revealed highly entangled fibrous network in the morphology of Tb3+--DCh xerogel. Solid state luminescence experiments suggested that sensiitization was observed in the xerogels and extent of sensitization was comparable to that of the gel state. Xerogel soaking studies inferred the strong adherence of the DHNN to the gel fibres. Chapter 3(B): Anion dependent structural, morphological and mechanical features of Ln(III)-Cholate gels In this chapter the counter anion influence on various aspects of hydrogels has been discussed. It has been reported from our laboratory that mixing of aqueous solutions of sodium cholate (15 mM) and various lanthanide acetates (5 mM) followed by sonication resulted in either transparent or transluscent gels. Unsurprisingly we found that aqueous solutions of lanthanide nitrates and lanthanide chlorides also formed hydrogels upon mixing with sodium cholate (Figure 33). Dried films of Tb3++-cholate and Eu3+-cholate gels prepared from their respective nitrate salts displayed birefringent structures under polarizing optical microscopy (POM). But no significant textures of any type were observed in the case of gels prepared from either chloride or acetate salts. Figure 3:: Photographs of the hydrogels prepared by mixing of aqueous solutions of various salts Tb33+ and Eu3+ with sodium cholate solutions. Scanning electron microscopic images exhibited fibrous structures for all the xerogels in the morphology. Atomic force microscopy and transmission electron microscopy measurements revealed helical morphology for xerogels prepared from nitrate salts where as flat tape-like cross linkage was observed for chloride or acetate based xerogels. Anion effect on mechanical properties was significant in the sense that gels prepared from acetate salts displayed highest mechanical strength followed by nitrate based gels which were stronger than that of chloride based gels. Titration of sodium cholate solution with various lanthanide salt solutions gave the direct evidence of thee pH variation as a function of the anions. Figure 4: TEM images of xerogels prepared from gels of nitrate salts of Tb3+ (left) and Eu3+ (right) Chapter 4: Design, synthesis a nd study of bile acid ‘click’ conjugates of perylene bisimides (PBIs) and naphthalene bisimides (NBIs) In this chapter the synthesis of novel bile acid derivatives of perylene and naphthalene bisimides is discussed. The ‘click’ chemistry procedure was used to link bile acid groups on to the chromophores. Azide derivatives of PBIs and NBIs were prepared inn 3 step methods which were coupled to propargyl esters of bile acids by following standard ‘click chemistry’ protocols to achieve the target molecules (Scheme 3). Scheme 3 The studies conducted mainly focused on Cholic acid (CA) conjugates of PBIs and NBIs. Steady state absorption and emission studies of CA conjugates were performed in 10% MeOH/DCM system. POM and fluorescence images showed red emissive aggregates in case of PBI films. TEM measurements revealed uniform aggregate sizes for both the films of PBI(CA)2 and NBI(CA)2. SEM and AFM (Fig 5) studies exhibited spherical aggregates of diameter around 100-200 nm for PBI(CA)2 films where as aggregates of diameter around 500-700 nm were observed for NBI(CA)2 films. Figure 5: AFM images and their corresponding height profiles of PBI films (left) and NBI films (right)
5

Hybrid Nanostructured Materials from Bile Acid Derived Supramolecular Gels

Chatterjee, Sayantan January 2017 (has links) (PDF)
Research activities towards the self-assembly of small organic molecules building blocks which lead to form supramolecular gel has increased extensively during the past two decades. The fundamental investigations of the morphological properties and the mechanical properties of these supramolecular gels are crucial for understanding gelation processes. Most supramolecular gelators were discovered by serendipity, but nowadays ratiional design of new gelators has become somewh at feasible. As a consequence, an increasing number of multi stimuli-responsive and functional molecular gels are reported, offering great prospects with myriads of applications includ ing drug delivery and smart materials as shown in scheme 1. Scheme 1 Part 2: Synthesis of semiconductor nanocrystals In the last two decades, the synthetic development of semiconductor col loidal nanocrystals has been extended from the adjustment of their size, shape, and composition of the particles at the molecular level. Such adjustments of nanocrystals at the molecula r level might open different fields of applications in materials and biological sciences. I n this chapter, the concept of the shape contr ol synthesis of colloidal nanocrystals with a narrow size distribution, and the synthesis of composition dependent alloy type mat erials are described (Scheme 2). Scheme 2 Chapter 2: Synthesis of luminescent semiconductor nanocrystals Part 1: Cadmium deoxycholate: a new and efficient precursor for high ly luminescent CdSe nanocrystals This part demonstrates the sy nthesis of Cadmium deoxycholate (CdDCh2), an efficient Cd-precursor for the synthesis of high quality, monodisperse, multi color emittting CdSe Scheme 3 nanocrystals, while maintaining their high photoluminescent quantum efficiency (Scheme 3). The high thermal stability of CdDCh2 (decomposition temperature: 332 °C) was utilized to achieve high injection and growth temperatures (∼300 °C) for the syntheesis of red emitting nanocrystals with a sharp f ull width at half maximum (FWHM) and multiple excitonic absorption features. We believe that CdDCh2 can be useful for the prreparation of other nanomaterials such as CdS, CdTe and CdSe@CdS core-shell QDs. Part 2: Ligand mediated exccited state carrier relaxation dynamics of Cd1-xZnxSe1-ySy NCs derived from bile salts Bile salts of Cadmium and Zinc provide a convenient and inexpensive single step synthetic route for highly photoluminescent and stable semiconductor nanocrystals (NCs). The high thermal stabilities of Cadmium and Zinc deoxycholates (CdDCh2 and ZnDCh2) allowed us to fine-tune the synthesis of the NCs at high temperatures while maintaining the monodispersity, crystallinity and reproducibility (Scheme 4). Organic capping agent induced lattice strain affects the excited Scheme 4 state relaxation processes of the NCs. The analysis of photoluminescence decay profiles revealed that the average lifettime decreased with the increasing lattice strain of the NCs. A kinetic stochastic model of photoexcited carrier relaxation dynamics of NCs was employed to estimate the values of the radiative recombination rates, the photoluminescence quenching rates and the non-radiative recombination rates of the NCs. These data showed that the non-radiative relaxation rates and the numbeer of surface trap states increased with the incrreasing lattice strain of the NCs. Such types of NCs can have great potential in nonlinear optics, photocatalysis and solar cells. Chapter 3: Synthesis of organic-inorganic hybrid materials Part 1: Hierarchical self-assembly of photoluminescent CdS nanoparticles into bile acid derived organogel: morphological and photophysical properties In this part a strategy towards integrating photoluminescent semiconductor nanoparticles into a bio-surfactant derived organoggel has been reported. A facially amphiphilic bile thiol was used for capping CdS nanoparticless (NPs) which were embedded in a gel derived from a new bile acid organogelator in order to furnish a soft hybrid material (Scheme 5). The presence of CdS NPs in a well-ordered 1D array on the organogel network was confirmed using microscopic Scheme 5 techniques. Photophysical stuudies of the gel–NP hybrid revealed resolved excitation and emission characteristics. Time resolved spectroscopic studies showed that the average lifetime value of the CdS NPs increased in the gel state compared to the sol phase. A kinetic model was utilized to obtain quantitative information about the different decay pathways of the photoexcited NPs in the sol and gel states. Part 2: A novel strategy towards designing a CdSe quantum dot–metallohydrogel composite material This section describes an efficiient method to disperse hydrophobic CdSe quaantum dots (QDs) in an aqueous phase using cetyltriimethylammonium bromide (CTAB) micelles without any surface ligand exchange. The water soluble QDs were then embedded in the 3D self-assembled fibrillar networks (SAFINs) of a hydrogel showing homogeneous dispersibility as eviidenced by Scheme 6 optical and electron microscopico techniques (Scheme 6). The photophyssical studies of the hydrogel–QD from composite are reported for the first time. These composite materials may have potential applications in biology, optoelectronics, sensors, non-linear optics and materials science. Part 3: Photophysical aspectts of self-assembled CdSe QD-organogel hyybrid and its thermoresponsive properties A luminescent hybrid gel was constructed by incorporating CdSe quantuum dots (QDs) in a facially amphiphilic bile acid derived dimeric urea organogel throough non-covalent interaction between ligands capped on QDs surface and hydrophobic pockets of the gel (Scheme 7). The optical transparency of the hybrid materials and the dirrectionalities of the QDs in the gel medium were confirmed by photophysical and microscopic studies. The detailed excited state dynamics of the QD–organogel hybrid has been reported for the first time with the help of lifetime analysis and a kinetic decay model, and thee data revealed that the average lifetime of the QDs decreased in the gel medium. The reversible thermoresponsive behavior of the QD doped organogel was investigated by steady-state fluorescence spectroscopy. W e believe that the results obtained herein provides a route to develop a thermoresponsive system for practical application, especially because of the spatial assembly between soft organic scaffolds and colloidal QDs. Scheme 7 Part 4: In-situ formation of luminescent CdSe QDs in a metallohydrogel: a strategy towards synthesis, isolation, storage and re-dispersion of the QDs A one step, in-situ, room temperature synthesis of yellow luminesce nt CdSe QD was achieved in a metallohydrog el derived from a facially amphiphilic bile salt, resulting in a QD-gel hybrid (Scheme 8). T he ordered self-assembly and homogeneous distribution of the CdSe QDs in the hydrogel network was observed from optical and electro n micrographs. The different excited state behav iors of the hybrid were revealed for the fir st time using time resolved spectroscopy. Ad ditionally, we described the successful isolation of the photoluminescent CdSe QDs from the gel followed by their re-dispersion in an organic solvent using suitable capping ligands. Scheme 8 Chapter 4: Facially a mphiphilic bile acid derived meta llohydrogel: an efficient template for th e enantioselective Diels-Alder reactio n An enantioselective Diels-Ald er reaction mediated by a facially amphiphilic bile acid derived metallogel scaffold has been a chieved (Scheme 9). Different hydrophobic domains present in Scheme 9 the gel appear to facilitate the enantioselective reaction. Various spectro scopic and electron microscopic techniques were employed to understand the possible reasons for the stereoselectivity in the gel. Subsequently, different counter anion s dependent rate accelerations and induced enantioselectivity in the ZnCh2 gel were studied in detail. These preliminary results of the non-covalent based supramolecular heterogeneous catalysis offer new possibilities for using metallogels as nanoreactors for different stereoselective reactions.
6

Bile Acid Based Supramolecular Gels, Semiconductor Nanocrystals And Soft Hybrid Materials

Chakrabarty, Arkajyoti 10 1900 (has links) (PDF)
Chapter 1. General Introduction This chapter gives an introduction to supramolecular organo/hydrogels and the related bile acid chemistry touching upon the gelation properties of the bile acid derivatives. Diverse applications of the supramolecular gels are illustrated with several examples. In the concluding section of this chapter, a brief introduction on the semiconductor nanocrystals is provided. Finally, the content of the thesis is outlined. Chapter 2. Bile Acid Derived Novel Organo/hydrogelators Part 1. Bile Acid Derived Organo/hydrogelators With a Basic Side Chain Cationic analogues of bile acids which showed remarkable gelation properties in water were reported from our laboratory. This led us to investigate the aggregation behaviour of some of the lithocholic and deoxycholic acid derivatives having a basic side-chain. Figure 1. Bile acid based organo/hydrogelators containing a basic side-chain. In this part, an organogelator 1 and a hydrogelator 2 derived from parent bile acids have been described with respect to their gelation properties, morphology, thermal and mechanical stability of the gels. The organo/hydrogels were shown to be responsive to acid-base stimuli as the organogel formed only in the protonated state and the hydrogel formed in the neutral form of the tertiary amines. The xerogel fibres obtained from the organogel were found to be solid-like and stable up to 200 oC as confirmed by variable temperature polarizing optical microscopy. The non-fluorescent organogel was doped with a fluorescent dye (coumarin 153) to design a novel dye-organogel composite material which was investigated with laser scanning confocal fluorescence microscopy showing the dye molecules were uniformly deposited on the organogel fibres. Part 2. Serendipitous Organogelation by Dimeric Bile Acid Esters This section highlights our work on the organogelators based on a number of dimeric esters consisting of different bile acid units. Figure 2. The three different dimeric bile acid esters as organogelators. In this part, three bile acid derived dimeric esters (1, 2 and 3) were shown to possess organogelation properties in aromatic and halogenated aromatic solvents. We studied the morphological features and rheological properties of these organogels. Next, the organogel matrix was exploited to generate and stabilize gold nanoparticles and prepare AuNP/gel hybrid material. Chapter 3. Cholate Hydrogels and Soft Gel-nanoparticle Hybrid Materials Sodium cholate does not form gel in water under any condition as compared to other sodium salts of other bile acids such as sodium deoxycholate and lithocholate which show pH-dependent gelation behaviour. Figure 3. Metal cholate hydrogels derived from sodium cholate and a variety of metal ions. In this chapter, super hydrogelation of sodium cholate induced by a variety of metal ions (Ca2+, Cu2+, Co2+, Zn2+, Cd2+, Hg2+ and Ag+) is highlighted with respect to their morphology and mechanical strength/stability. The calcium cholate supramolecular system showed the presence of helically twisted nanofibres which were utilised in the synthesis of soft hybrid materials containing metal (Au and Ag) and metal sulphide (CdS, ZnS, HgS, etc.) nanoparticles. Chapter 4. Cadmium Deoxycholate and Highly Luminescent CdSe Nanocrystals Bile acid derivatives have very high chemical and thermal stability owing to the presence of a rigid steroidal nucleus. We explored the possibility of utilizing the bile salt derived from Cd as a metal complexes as precursor to high quality nanocrystals (NCs) which can only be accessed at high temperatures (>200 oC). Figure 4. Synthesis of high quality CdSe NCs from cadmium deoxycholate. In this chapter, the synthesis of high quality CdSe nanocrystals is discussed using a novel bile acid based precursor: cadmium salt of 7-deoxycholic acid, which has high thermal stability and can be conveniently used at very high temperatures (>300 oC) required for the synthesis of high quality nanocrystals. Syntheses were done both by ‘injection’ and ‘non-injection’ modes. The as-prepared nanocrystals have high photoluminescence quantum yield, multiple excitons, narrow size-distributions and zinc blende/wurtzite crystalline cores. Appendix. Steroidal Thiols in Design of Novel Quantum dot (QD)/Gel Hybrid Materials Bile acid derived steroidal thiols were reported to be efficient capping agents for silver and gold nanoparticles from our laboratory. So, we wanted to check whether they could stabilize the semiconductor nanocrystals as well. Figure 5. Steroidal thiols as stabilizers of semiconductor quantum dots. In this short report, we describe the efficient capping by bile acid derived thiols of group II-VI semiconductor nanocrystals/quantum dots (QDs) (CdS, CdSe). After synthesizing the thiol capped QDs, we tried to disperse the capped nanoparticles into the gel fibres. The hybrid gels showed the presence of nanoparticles inside the fibres as observed by transmission electron microscopy, although the photoluminescence of the QDs was very low in the gel matrix, which might be due to the inefficient surface passivation of the nanoparticles in the gel.
7

Design, Synthesis and Applications of Novel Two-Component Gels and Soft-Nanocomposites

Bhattacharjee, Subham January 2014 (has links) (PDF)
No description available.
8

Computer Simulation and Mathematical Modeling of Reversibly Associated Polymers

Wang, Shihu 20 July 2010 (has links)
No description available.

Page generated in 0.0867 seconds