• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 13
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 47
  • 18
  • 13
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Adhesion and Surface Energy Profiles of Large-area Atomic Layers of Two-dimensional MoS2 on Rigid Substrates by Facile Methods

Wu, Min 05 1900 (has links)
Two-dimensional (2D) transition metal dichalcogenides (TMDs) show great potential for the future electronics, optoelectronics and energy applications. But, the studies unveiling their interactions with the host substrates are sparse and limits their practical use for real device applications. We report the facile nano-scratch method to determine the adhesion energy of the wafer scale MoS2 atomic layers attached to the SiO2/Si and sapphire substrates. The practical adhesion energy of monolayer MoS2 on the SiO2/Si substrate is 7.78 J/m2. The practical adhesion energy was found to be an increasing function of the MoS2 thickness. Unlike SiO2/Si substrates, MoS2 films grown on the sapphire possess higher bonding energy, which is attributed to the defect-free growth and less number of grain boundaries, as well as less stress and strain stored at the interface owing to the similarity of Thermal Expansion Coefficient (TEC) between MoS2 films and sapphire substrate. Furthermore, we calculated the surface free energy of 2D MoS2 by the facile contact angle measurements and Neumann model fitting. A surface free energy ~85.3 mJ/m2 in few layers thick MoS2 manifests the hydrophilic nature of 2D MoS2. The high surface energy of MoS2 helps explain the good bonding strength at MoS2/substrate interface. This simple adhesion energy and surface energy measurement methodology could further apply to other TMDs for their widespread use.
32

The rational design of drug crystals to facilitate particle size reduction. Investigation of crystallisation conditions and crystal properties to enable optimised particle processing and comminution.

Shariare, Mohammad H. January 2011 (has links)
Micronisation of active pharmaceutical ingredients (APIs) to achieve desirable quality attributes for formulation preparation and drug delivery remains a major challenge in the pharmaceutical sciences. It is therefore important that the relationships between crystal structure, the mechanical properties of powders and their subsequent influence on processing behaviour are well understood. The aim of this project was therefore to determine the relative importance of particle attributes including size, crystal quality and morphology on processing behaviour and the characteristics of micronised materials. It was then subsequently intended to link this behaviour back to crystal structure and the nature of molecular packing and intermolecular interactions within the crystal lattice enabling the identification of some generic rules which govern the quality of size reduced powders. In this regard, different sieve fractions of lactose monohydrate and crystal variants of ibuprofen and salbutamol sulphate (size, morphology and crystal quality) were investigated in order to determine those factors with greatest impact on post-micronisation measures of particle quality including particle size, degree of crystallinity and surface energy. The results showed that smaller sized feedstock should typically be used to achieve ultrafine powders with high crystallinity. This finding is attributed to the reduced number of fracture events necessary to reduce the size of the particles leading to decreases in milling residence time. However the frequency of crystal cracks is also important, with these imperfections being implicated in crack propagation and brittle fracture. Ibuprofen crystals with a greater number of cracks showed a greater propensity for comminution. Salbutamol sulphate with a high degree of crystal dislocations however gave highly energetic powders, with reduced degree of crystallinity owing to the role dislocations play in facilitating plastic deformation, minimising fragmentation and extending the residence of particles in the microniser. Throughout these studies, morphology was also shown to be critical, with needle like morphology giving increased propensity for size reduction for both ibuprofen and salbutamol sulphate, which is related to the small crack propagation length of these crystals. This behaviour is also attributed to differences in the relative facet areas for the different morphologies of particles, with associated alternative deformation behaviour and slip direction influencing the size reduction process. Molecular modelling demonstrated a general relationship between low energy slip planes, d-spacing and brittleness for a range of materials, with finer particle size distributions achieved for APIs with low value of highest d-spacings for identified slip planes. The highest d-spacing for any material can be readily determined by PXRD (powder x-ray diffraction) which can potentially be used to rank the milling behaviour of pharmaceutical materials and provides a rapid assessment tool to aid process and formulation design. These studies have shown that a range of crystal properties of feedstock can be controlled in order to provide micronised powders with desirable attributes. These include the size, morphology and the density of defects and dislocations in the crystals of the feedstock. Further studies are however required to identify strategies to ensure inter-batch consistency in these attributes following crystallisation of organic molecules.
33

Surface Forces between Silica Surfaces in CnTACl Solutions and Surface Free Energy Characterization of Talc

Zhang, Jinhong 11 December 2006 (has links)
In general, the stability of suspension can be studied using two methods. <i>One</i> is to directly measure the forces between two interacting surfaces in media. <i>The other</i> is to study the interfacial surface free energies of the particles in suspension. Direct surface force measurements were conducted between silica surfaces in octadecyltrimetylammonium chloride (C₁₈TACl) solutions using an Atomic Force Microscope (AFM). The results showed that the hydrophobic force existed in both air-saturated and degassed C₁₈TACl solutions. The attraction decreased with NaCl addition, and was the strongest at the point of charge neutralization (p.c.n.) of silica substrate. The force measurement results obtained in C<sub>n</sub>TACl solutions showed that the attractions decayed exponentially and became the maximum at the p.c.n.'s. The decay lengths (<i>D</i>) increased with surfactant chain length. The measured forces were fitted to a charged-patch model of Miklavic <i>et al</i>. (1994) with rather large patch sizes. It was also found that the decay length decreased linearly with the effective concentration of the CH2/CH3 groups raised to the power of -1/2. This finding is in line with the model of Eriksson <i>et al</i>. (1989). It suggested that the long-range attractions are hydrophobic forces originating from the changes in water structure across a hydrophobic surface-solution interface. For the TiO₂/water/TiO₂ system, the Hamaker constant was found to be 4±1×10<sup>-20</sup> J. The force curves obtained in the TiO₂/C<sub>n</sub>TACl system showed a repulsion-attraction-repulsion transition with increasing surfactant concentration. The long-range attraction observed between TiO₂ surfaces in C<sub>n</sub>TACl solutions reached maximum at the p.c.n., and the decay length increased with chain length. In present work, the thin-layer wicking technique was used to determine the surface free energy (γ<sub>s</sub>) and its components of talc samples. The results showed that the basal surfaces of talc are weakly basic while the edge surfaces are acidic. The effect of chemicals on the surface free energies of talc was systemically studied. The results showed that CMC (carboxymethyl cellulose sodium salt) and EO/PO (ethylene oxide/propylene oxide) co-polymers made talc surface hydrophilic by increasing the surface free energies, especially γ<sup>LW</sup> and γ<sup> -</sup>. SOPA (sodium polyacrylate) increased greatly the zeta-potentials instead of the surface free energies. / Ph. D.
34

Karakterizacija površinske strukture neštampajućih elemenata CtP termalne štamparske forme za ofset štampu / Surface structure characterization of non-printing elements of offset CtPthermal printing form

Pavlović Živko 19 May 2012 (has links)
<p>Disertacija daje pregled novih i relevantnih istraživanja i stavova<br />u naučnoj zajednici na temu štamparskih formi i uticaja procesa<br />štampe na trošenje neštampajućih elemenata. U disertaciji je<br />ukazano na kontinualno praćenje topografskih promena<br />neštampajućih elemenata štamparskih formi kako bi se kontrolisao<br />period eksploatacije a time i proces reprodukcije. Takođe daje<br />prilog novim istraživanjima sa analizom velikog broja<br />eksperimentalnih uzoraka sa dobijenim izmerenim podacima i<br />odgovarajućim korelacijama i predstavlja napredak u shvatanju<br />mehanizma trošenja neštampajućih površina štamparskih formi i<br />njihov uticaj na tribološke promene u odnosu na strukturu osnove<br />aluminijuma i sloja aluminijum oksida.</p> / <p>Dissertation gives an overview of the current state, research and theories of<br />printing forms and influence of printing process on wearing of non-printing<br />elements within the science community. The dissertation points out the continuous<br />monitoring of topographic changes of printing form non-printing elements to control<br />the exploitation of a period of time and the process of reproduction. This work<br />contributes to new research with the analysis of large number of experimental<br />samples and calculated correlations and represents an advance in the<br />comprehension of the surface wear mechanism of printing form non-printing<br />elements and their influence on the tribological changes to the structure of the<br />base layer of aluminium and aluminium oxide.</p>
35

Surfaces moléculaires hétérogènes : un outil vers le control [i.e. contrôle] du mouillage et des morphologies d'auto-assemblage de nano objets / Heterogene molecular surfaces : A tool towards controlling the wetting morphologies and self-assembling of nano-objects

Alloul, Haytham 25 April 2012 (has links)
La connaissance des interactions interfaciales et l'énergie de surface est nécessaire pour étudier et modéliser les processus qui se déroulent dans le mouillage, l'adhésion ou la diffusion. Tels phénomènes sont rencontrés dans la préparation des suspensions, des émulsions et les peintures. Dans ce contexte, l'énergie de surface représente un paramètre important dans l'étude des propriétés interfaciales solide/liquide où plusieurs applications sont impliquées. Nous avons étudié l'effet de la modification chimique sur l'énergie de surface de deux silices choisies selon deux différentes échelles: l'OX qui présente un substrat nanométrique et les wafers de silicium qui est un substrat millimétrique. Pour la silice OX 50, La modification chimique de la surface a été réalisée avec l'hexadecyltrichlosilane (HTS) à caractère hydrophobe. L'infrarouge en transmission et la quantification de carbone organique ont été efficaces pour estimer les quantités croissantes d'HTS greffées à la surface de la silice. Deux isothermes d'adsorption ont été tracées. Ensuite, la volumétrie d'adsorption continue d'argon et d'azote a été utilisée pour étudier l'évolution de l'hétérogénéité énergétique. Ceci a été achevé en faisant recours à une stratégie d'analyse de volume adsorbée à la monocouche (Vm) d'azote et d'argon. Les résultats obtenus ont servi pour tracer une troisième isotherme d'adsorption. La quantification de l'énergie de surface a été réalisée avec la montée capillaire (technique macroscopique) et la chromatographie gazeuse en phase inverse (CGI) (technique moléculaire). Pour les wafers de silicium, deux types de surfaces ont été élaborées durant cette étude. Le premier hydrophile (traitement Piranha, formations des groupements OH). Cette surface a été obtenue par oxydation de ces wafers (traitement Piranha). La deuxième a été obtenue par le greffage d'HTS (greffons CH3). La quantification de l'énergie de surface a été réalisée avec la mouillabilité (technique macroscopique) et la microscopie à force atomique (AFM) (technique nanoscopique). Enfin, les différentes valeurs d?énergie de surface de la silice vierge OX 50 ont été comparées avec celles de la surface plane hydrophile (OH). Pour les surfaces hydrophobes, on a comparé les valeurs d?énergie de surface de la silice OX 50 modifiée d'une quantité maximale d?HTS avec le wafer de silicium à greffons CH3 / The knowledge about interfacial free energy interactions and surface energy is necessary for understanding and modeling many surface and interface processes. The investigation of the surface properties of solids is very important in several applications such as wetting, spreading and adhesion processes. Such processes occur during the preparation of suspensions, emulsions, painting, printing and corrosion protection. Knowledge about surface free energy of solids appears as a very important parameter determining the interfacial properties in solid/liquid and solid/gas interfaces where many implementations are involved. We have studied the effect of the chemical modification on surface energy for two types of silica: Aerosil OX 50 is chosen as a nanometric substrate and the wafers of silicium chosen as micrometric substrate. For silica OX 50, the chemical modification was carried out using the hydrophobic hexadecyltrichlorosilane (HTS). Transmission infrared and the quantification of organic carbon were helpful in the estimation of increasing quantities of HTS grafted to the surface. Two adsorption isotherms were drawn. Then, continuous adsorption isotherm of argon and nitrogen was used to study the evolution of energetic heterogeneity in the course of the chemical reaction. This was achieved by applying an analysis strategy of the monolayer volume (Vm) of adsorbed argon and nitrogen. Results enabled the drawing of a third adsorption isotherm. The quantification of surface energy for various samples was realize using capillary rise (macroscopic technique) and inverse gas chromatography (IGC) (molecular technique). For silicon wafers, two types of surfaces were elaborated in this study. The first hydrophilic (OH grafting), was obtained by oxidation of silicon wafers (Piranha treatment), the second hydrophobic (CH3 grafting), was obtained by grafting HTS molecules to the surface. The quantification of the surface free energy was achieved using the wettability (macroscopic technique) and the atomic force microscopy (AFM) (nanoscopic technique). Finally the different values of surface free energy obtained for native silica are compared to those of hydrophilic (OH) flat surfaces. As for hydrophobic surfaces, the silica OX 50 modified with maximum quantity of HTS is compared to Hydrophobic (CH3) flat surfaces
36

Mitigating fouling of heat exchangers with fluoropolymer coatings

Magens, Ole Mathis January 2019 (has links)
Fouling is a chronic problem in many heat transfer systems and results in the need for frequent heat exchanger (HEX) cleaning. In the dairy industry, the associated operating cost and environmental impact are substantial. Antifouling coatings are one mitigation option. In this work, the fouling behaviour of fluoropolymer, polypropylene and stainless steel heat transfer surfaces in processing raw milk and whey protein solution are studied. Methodologies to assess the economics of antifouling coatings are developed and applied. Two experimental apparatuses were designed and constructed to study fouling at surface temperatures around 90 °C. A microfluidic system with a 650 x 2000 µm flow channel enables fouling studies to be carried out by recirculating 2 l of raw milk. The apparatus operates in the laminar flow regime and the capability to probe the local composition of delicate fouling deposit $\textit{in-situ}$ with histological techniques employing confocal laser scanning microscopy. A larger bench-scale apparatus with a 10 x 42 mm flow channel was built to recirculate 17 l of solution in the turbulent flow regime which is more representative of conditions in an industrial plate HEX. Experimental results demonstrate that fluoropolymer coatings can reduce fouling masses from raw milk and whey protein solution by up to 50 %. Surface properties affect the structure and composition of the deposit. At the interface with apolar surfaces raw milk fouling layers are high in protein, whereas a strongly attached mineral-rich layer is present at the interface with steel. Whey protein deposits generated on apolar surfaces are more spongy and have a lower thermal conductivity and/or density than deposits on steel. The attraction of denatured protein towards apolar surfaces and the formation of a calcium phosphate layer on steel at later stages of fouling are explained with arguments based on the interfacial free energy of these materials in water. The financial attractiveness of coatings is considered for HEX subject to linearly and asymptotically increasing fouling resistance and using a spatially resolved fouling model. An explicit solution to the cleaning-scheduling problem is presented for the case of equal heat capacity flow rates in a counter-current HEX. Scenarios where the use of coatings may be attractive or where there is no financial benefit in cleaning a fouled exchanger are identified. Finally, experimental data are used to estimate the economic potential of fluoropolymer coated HEXs in the ultra-high-temperature treatment of milk. In the considered case, the value of a fluoropolymer coating inferred from the reduction in fouling is estimated to be around 2000 US$/m².
37

Phase Transitions of Long-Chain N-Alkanes at Interfaces

Maeda, Nobuo, nobuo@engineering.ucsb.edu January 2001 (has links)
An experimental study of phase transitions of long-chain n-alkanes induced by the effect of interfaces is described. ¶ The phase behaviour of long-chain n-alkanes (carbon number 14, 16, 17, 18) adsorbed at isolated mica surfaces and confined between two mica surfaces has been studied in the vicinity of and down to several degrees below the bulk melting points, Tm. Using the Surface Force Apparatus we have measured the thickness of alkane films adsorbed from vapour (0.97 [equal to or greater-than] p/p[subscript o] [equal to or greater-than] 0.997), studied capillary condensation transition, subsequent growth of capillary condensates between two surfaces, and phase transitions in both the adsorbed films and the condensates. By measuring the growth rate of the capillary condensates we have identified a transition in the lateral mobility of molecules in the adsorbed films on isolated mica surfaces. This transition to greater mobility occurs slightly above Tm for n-hexadecane, n-heptadecane and n-octadecane but several degrees below Tm for n-tetradecane, and is accompanied by a change in wetting behaviour and a measurable decrease in adsorbed film thickness for n-heptadecane and n-octadecane. Capillary condensates that form below Tm remain liquid, but may freeze if the degree of confinement is reduced by separation of the mica surfaces. An increase in the area of the liquid-vapour interface relative to that of the liquid-mica interface facilitates freezing in the case of the long-chain alkanes, which show surface freezing at the liquid-vapour interface. ¶ Although thermodynamic properties of the surface freezing transition have been rather well documented, the kinetics involved in formation of such ordered monolayers has so far received very little attention. We studied the surface tension of n-octadecane as a function of temperature in the vicinity of Tm, using the static Wilhelmy plate and the dynamic maximum bubble pressure methods. The two methods give different results on cooling paths, where nucleation of the surface ordered phase is involved, but agree on heating paths, where both methods measure properties of the equilibrium surface phase. On cooling paths, the surface of bubbles may supercool below the equilibrium surface freezing temperature. The onset of surface freezing is marked by a sharp drop in the surface tension. The transition is accompanied by an increased stability of the films resulting in longer bubble lifetimes at the liquid surface, which suggests that the mechanical properties of the surfaces change from liquid-like to solid-like. Our results suggest occurrence of supercooling of the monolayer itself.
38

In-vitro-Untersuchung der antimikrobiellen und zytotoxischen Eigenschaften eines kupferhaltigen Zinkoxidphosphatzementes / In vitro antimicrobial and cytotoxic properties of a phosphate cement with copper additive

Wassmann, Torsten 15 November 2017 (has links)
No description available.
39

Samovolně seskupené vrstvy na bázi křemíku / Self-assembled layers based on silicon

Bábík, Adam January 2009 (has links)
Thin film deposition, characterization and properties of self-assembled monolayers based on silicon were studied with emphasis on the SA monolayers deposited from vinyltriethoxysilane and vinyltrichlorsilane. The thesis is aimed at basic properties of the SA monolayer and explanation of its growth. Methods and techniques used for analysis of the monolayer were described as well. Contact angle measurements and an evaluation of the surface free energy are depicted in details. The deposited SA layers were observed with respect to their chemical composition and surface morphology by X-ray photoelectron spectroscopy (XPS), ellipsometry and atomic force microscopy (AFM).
40

PA12/PBT reactive blending with hydropolysiloxane by carbonyl hydrosilylation reaction : towards new polymer materials / Mélange réactif entre PA12 / PBT et hydropolysiloxane par réaction d'hydrosilylation carbonyle : vers de nouveaux matériaux polymères

Li, Jingping 15 December 2016 (has links)
Les thermoplastiques contenant du PDMS ont attiré beaucoup d’attention à cause de leur potentiel dans un large spectre d’applications. Lors du mélange du PDMS avec des thermoplastiques, le problème de la compatibilité ne peut être ignoré. Cette dernière engendre de faibles propriétés mécaniques ainsi qu’une surface rugueuse. Par conséquent, le défi principal des mélanges PDMS/thermoplastique est de trouver un moyen efficace et adapté, comme le mélange réactif in situ, pour compatibiliser les différentes phases. Récemment, nous avons trouvé une réaction intéressante entre l’hydrosilane (SiH) et les groupes carbonyles catalysés par le triruthénium dodecacarbonyle [Ru3(CO)12]. Il a le potentiel pour réaliser cette compatibilisation réactive. Dans un premier temps, nous avons étudié le mécanisme de la réaction d’hydrosilylation catalysée par le ruthénium dans le cas du N-méthylpropionamide. Les composés N-silicatés formés qui peuvent jouer par la suite le rôle de compatibilisant lors du mélange réactif. Dans un deuxième temps, cette réaction d’hydrosilylation a été étendue au mélange réactif de PA12 avec du PDMS terminé hydride en conditions de mélange fondu. La réaction a été réalisée rapidement (en 1 minute) en présence de Ru3 (CO) 12 (1wt%). Ensuite, nous avons étudié la microstructure des deux mélanges. En comparaison avec le mélange non réactif, la dispersion du PDMS dans celui réactif était clairement améliorée puisque la taille des domaines. En outre, dans de telles conditions réactives et en présence du catalyste de ruthénium, une réaction d’oxydation du PDMS-SiH est partiellement observée. Ceci inclue par exemple les propriétés de stabilité thermique, de comportement cristallin, d’énergie de surface et de perméabilité et séparation des gaz. Dans un troisième temps, nous nous sommes intéressés à l’application de la réaction d’hydrosilylation catalysée par le ruthénium aux composites PBT/polyméthylhydrosiloxane (PMHS). Cependant, à cause des températures élevées nécessaires à la mise en forme du PBT (220°C), une réaction de réticulation entre le PBT et le PMHS apparait mais également et une auto-réticulation du PMHS. Enfin, ces résultats montrent une application potentielle et initial de ruthénium hydrosilylation catalysées à compatibilisation réactive entre l'hydropolysiloxane et un polyamide ou un polyester / Polydimethylsiloxane (PDMS) containing thermoplastics have attracted much attention due to their potential in wide range of applications. However, when blending PDMS with thermoplastics, the incompatible problem cannot be ignored. It may results in weak mechanical properties and a rough surface. Therefore, the main challenge of PDMS and thermoplastic blend is to find an efficient and convenient way like in situ reactive blending to realize the compatibilization between tthem. Recently, we found an interesting reaction between hydrosilane (SiH) and carbonyl group catalyzed by triruthenium dodecacarbonyl [Ru3(CO)12]. It has potential to realize such reactive compatibilization. Firstly, we investigated the mechanism of ruthenium catalyzed hydrosilylation reaction of N-methylpropionamide, and found that the formed N-silylated compounds which can work as compatibilizers in later reactive blending. Then this hydrosilylation reaction was extended to the reactive blending of PA12 with hydride terminated PDMS under molten processing conditions. The reaction was carried out quickly (in 1 minute) in the presence of Ru3(CO)12 (1wt%). Compared to the unreacted one, the dispersion of PDMS after reaction was obviously improved. Besides, in such reactive conditions, PDMS-SiH oxidation reaction was partially observed. This phenomenon leads to a second PDMS gel based phase. Properties like thermal stability, crystalline behavior, surface energy and gas permeability and separation of such blends were also studied. Secondly, ruthenium catalyzed hydrosilylation was also applied to PBT and polymethylhydrosiloxane (PMHS) which was processed at higher temperature (220°C). The final material includes the crosslinking network formed between PBT and PMHS and a part of PMHS self-crosslinking forming PMHS gel-like phase due to the higher processing temperature of PBT and high reactivity of PMHS. Finally, these results show a potential and initial application of ruthenium catalyzed hydrosilylation to reactive compatibilization between hydride polysiloxane and polyamide or polyester

Page generated in 0.3724 seconds