Spelling suggestions: "subject:"burface albedo"" "subject:"1surface albedo""
1 |
Investigations of Albedo Over SnowGreen, Leslie 04 1900 (has links)
<p> The importance of snow surface albedo has been recorded by many authors. Techniques have been attempted with less than favorable results by D.E. Petzold (1977). This paper investigates the methods proposed by Petzold and offers alternative methods of albedo estimations using polar, sub-polar and continental stations as data
sources. </p> / Thesis / Bachelor of Arts (BA)
|
2 |
Analyse de sensibilité et amélioration des simulations d’albédo de surfaces enneigées dans les zones subarctiques et continentales humides à l’est du Canada avec le schéma de surface CLASS.Thériault, Nathalie January 2015 (has links)
Résumé : Le bilan d’énergie de la Terre est largement influencé par la variation de l’albédo de surface (fraction de l'énergie solaire réfléchie par une surface). Ces variations sont modifiées par la présence, l’épaisseur et les propriétés physiques de la neige. Le réchauffement climatique observé a un impact significatif sur l'évolution du couvert nival, ce qui influence grandement l'albédo de surface, et en retour modifie le climat. Malgré l’importance de l’albédo de surface, plusieurs modèles calculent l’albédo de manière empirique, ce qui peut entraîner des biais significatifs entre les simulations et les observations selon les surfaces étudiées. Le schéma de surface canadien, Canadian Land Surface Scheme, CLASS (utilisé au Canada dans les modèles climatiques Global Climate Model et Modèle Régional Canadien du Climat), modélise l’évolution spatiale et temporelle des propriétés de la neige, dont l'albédo. L’albédo de CLASS est calculé selon la hauteur et l’âge (métamorphisme) de la neige au sol, et selon l’accumulation de la neige sur la canopée.
Les objectifs de ce travail sont d’analyser le comportement de l’albédo (simulé et mesuré) et d’améliorer le paramétrage de l’albédo de surface pendant l’hiver sur des régions à l’est du Canada. Plus précisément, le comportement de l’albédo a été étudié par l’analyse de la sensibilité de CLASS 3.6 aux paramètres prescrits (paramètres qui sont utilisés dans les calculs du modèle dont les valeurs sont fixes et définies empiriquement). En plus de l’analyse des variations temporelles de l’albédo en fonction des conditions météorologiques pour les terrains de végétation basse (noté "gazon") et de conifères. Aussi, l’amélioration du paramétrage a été tentée en optimisant (pour le gazon et les conifères) ou en modifiant (pour le gazon) les calculs considérant les paramètres prescrits dont l’albédo de CLASS est sensible.
En premier lieu, nous avons montré que la sensibilité de l’albédo de CLASS en terrain de gazon dépend grandement du seuil du taux de précipitation nécessaire pour que l’albédo soit actualisé (à sa valeur maximale) dans le modèle. Faire varier ce seuil entraîne que les simulations quotidiennes d’albédo de surface enneigées vont s’étaler en majorité entre 0.62 à 0.8 (supérieur à l’étalement normalement simulé). Le modèle est aussi sensible à la valeur d’actualisation de l’albédo dont la variation entraîne que l’albédo enneigé quotidien peut s’étaler de jusqu’à 0.48 à 0.9. En milieu forestier (conifères), le modèle est peu sensible aux paramètres prescrits étudiés. La comparaison entre les albédos simulés et les mesures au sol montrent une sous-estimation du modèle de -0.032 (4.3 %) à SIRENE (gazon au sud du Québec), de -0.027 (3.4 %) à Goose-Bay (gazon en site arctique) et de -0.075 (27.1 %) à la Baie-James (forêt boréale). Lorsque comparée avec les données MODIS (MODerate resolution Imaging Spectroradiometer) la sous-estimation du modèle à la Baie-James est de -0.011 (5.2 %). On montre que la valeur de l'albédo mesurée lors des précipitations de neige à Goose Bay est en moyenne supérieure à la valeur d'actualisation de l'albédo dans le modèle (0.896 par rapport 0.84), ce qui peut expliquer la sous-estimation. En forêt, un des problèmes provient de la faible valeur de l'albédo de la végétation enneigée (ajout de 0.17 dans le visible), tandis que l’albédo de surface mesuré peut être augmenté de 0.37 (par rapport à la végétation sans neige). Aussi, l’albédo de la neige sur la canopée ne diminue pas avec le temps contrairement à ce qui est observé.
En second lieu, nous avons tenté d’améliorer le paramétrage, en optimisant des paramètres prescrits (aucune amélioration significative n’est obtenue) et en modifiant la valeur d'actualisation de l’albédo de la neige en zone de gazon. Cette valeur, normalement fixe, a été rendue variable selon la température et le taux de précipitations. Les résultats démontrent que les modifications n’apportent pas d'améliorations significatives de la RMSE (Root Mean Square Error) entre les simulations et les mesures d’albédo. Les modifications sont toutefois pertinentes pour ajouter de la variabilité aux fortes valeurs d’albédo simulées ainsi que pour améliorer la compréhension du comportement des simulations d’albédo. Aussi, la méthodologie peut être reproduite pour d’autres études qui veulent étudier la représentativité et améliorer les simulations d’un modèle. / Abstract : The surface energy balance of northern regions is closely linked to surface albedo (fraction of solar radiation reflected by a surface) variations. These variations are strongly influenced by the presence, depth and physical properties of the snowpack. Climate change affects significantly snow cover evolution, and decreases surface albedo and snow albedo with positive feedback to climate. Despite the importance of the albedo, many models empirically compute it, which can induce significant biases with albedo observations depending on studied surfaces. The Canadian Land Surface Scheme, CLASS (used in Canada into the Canadian Regional Climate Model, and the Global Climate Model), simulates the spatial and temporal evolution of snow state variables including the albedo. The albedo is computed according to the depth of snow on the ground as well as the accumulation of snow in trees. The albedo seasonal evolution for snow on ground is estimated in CLASS from an empirical aging expression with time and temperature and a “refresh” based on a threshold of snowfall depth. The seasonal evolution of snow on canopy is estimated from an interception expression with trees type and snowfall density and an empirical expression for unloading rate with time.
The objectives of this project are to analyse albedo behavior (simulated and measured) and to improve CLASS simulations in winter for Eastern Canada. To do so, sensitivity test were performed on prescribed parameters (parameters that are used in CLASS computation, their values are fixed, and determined empirically). Also, albedo evolution with time and meteorological conditions were analysed for grass and coniferous terrain. Finally, we tried to improve simulations by optimizing sensitive prescribed parameters for grass and coniferous terrain, and by modifying the refresh albedo value for grass terrain.
First, we analysed albedo evolution and modelling biases. Grass terrain showed strong sensitivity to the precipitation rate threshold (for the albedo to refresh to its maximum value), and to the value of the albedo refresh. Both are affected by input data of precipitation rate and phase. The modification of precipitation threshold rate generates daily surface albedo to vary mainly (75 % of data in winter) between 0.62 and 0.8, which is a greater fluctuation than for a normal simulation over winter. The modification of the albedo refresh value generates surface albedo to vary mainly (75 %) between 0.66 and 0.79, but with extreme values, 25 % of data, from 0.48 to 0.9. Coniferous areas showed small sensitivity to studied prescribed parameters. Also, comparisons were made between simulated and measured mean albedo during winter. CLASS underestimates the albedo by -0.032 (4.3 %) at SIRENE (grass in Southern Quebec), by -0.027 (3.4 %) at Goose Bay (grass in arctic site) and by -0.075 (27.1 %) at James Bay (boreal forest) (or -0.011 (5.2 %) compared to MODIS (MODerate resolution Imaging Spectroradiometer) data). A modelling issue in grass terrain is the small and steady maximum albedo value (0.84) compared to measured data in arctic condition (0.896 with variation of an order of 0.09 at Goose Bay, or 0.826 at SIRENE with warmer temperatures). In forested areas, a modelling issue is the small albedo increase (+0.17 in the visible range, +0.04 in NIR) for the part of the vegetation that is covered by snow (total surface albedo gets to a maximum of 0.22) compared to events of high surface albedo (0.4). Another bias comes from the albedo value of the snow trapped on canopy which does not decrease with time in opposition to observed surface albedo which is lower at the end of winter and which suggests snow metamorphism occurred.
Secondly, we tried to improve simulations by optimizing prescribed parameters and by modifying the albedo’s maximum value computation. Optimisations were made on sensitive prescribed parameters or on those that seemed unsuited. No significant RMSE (Root Mean Square Error) improvements were obtained from optimisations in both grass and coniferous area. Improvements of albedo simulations were tried by adjusting the maximum value (normally fixed) with temperature and precipitation rate, in grass terrain. Results show that these modifications did not significantly improved simulations’ RMSE. Nevertheless, the latter modification improved the correlation between simulated and measured albedo. These statistics were made with the whole dataset which can reduce the impact of modifications (they were mainly affecting albedo during a precipitation event), but it allows to overview the new model performance. Modifications also added variability to maximum values (closer to observed albedo) and they increased our knowledge on surface albedo behavior (simulated and measured). The methodology is also replicable for other studies that would aim to analyse and improve simulations of a surface model.
|
3 |
Forest albedo in the context of different cloud situations derived from irradiance measurements at the Leipzig floodplain crane: A pilot studySchäfer, M., Jha, S. S., Ehrlich, A., Jäkel, E., Thoböll, J., Wendisch, M. 23 May 2023 (has links)
The surface albedo significantly modulates the atmospheric energy budget
and, thus, vertical radiation, energy, and mass fluxes. Therefore, it regulates the local
and regional effects of climate warming. Over a forest canopy, the surface albedo mainly
depends on the seasonal leaf state. Furthermore, for certain surface types, such as snow,
it has been shown that the surface albedo changes as a function of cloudiness. A similar
effect is expected over forest surfaces, leading to complex feedback loops between forest
surfaces and climate. To investigate these processes, a pilot study was performed at the
Leipzig floodplain crane to observe the forest canopy albedo under different atmospheric
conditions in 2021. First analyses revealed a dependency of the forest albedo from the
cloud state, which is slightly stronger in the near-infrared wavelength range compared to
the visible wavelength range. / Der atmosphärische Strahlungshaushalt und damit auch die vertikale
Strahlungsverteilung, Energie- und Massenflüsse werden signifikant durch die
Bodenalbedo gesteuert. Diese regulieren somit lokale und regionale Effekte der Klimaerwärmung.
Über einem Wald hängt die Bodenalbedo hauptsächlich vom saisonalen
Blattstatus ab. Zudem wurde für bestimmte Bodentypen wie Schneeoberflächen gezeigt,
dass die Bodenalbedo eine Funktion der Bewölkung ist. Ähnlicher Effekte werden für
Waldoberflächen erwartet, welche zu komplexen Rückkopplungseffekten zwischenWaldoberflächen
und dem Klima führen. Um diese Prozesse zu untersuchen wurde im Jahr
2021 eine Vorstudie am Leipziger Auwaldkran durchgeführt, um die Waldalbedo unter
verschiedenen atmosphärischen Bedingungen zu beobachten. Erste Analysen zeigen,
dass auch die Albedo des Waldes von den Bewölkungsbedingungen abhängt. Der Effekt
ist dabei etwas stärker im nah-infrarotem als im sichtbaren Wellenlängenbereich zu
beobachten.
|
4 |
Einfluss der Bodenalbedo und Bodenreflektivität von urbanen Oberflächen auf die Ableitung der optischen Dicke von Aerosolpartikeln aus SatellitenmessungenMey, Britta 02 May 2013 (has links) (PDF)
Diese Dissertation ist innerhalb eines Teilprojekts des Schwerpunktprogramms SPP1233 ”Megacities Megachallenge - Informal Dynamics of Global Change“ entstanden. Thema der vorliegenden Arbeit ist die Untersuchung der heterogenen Reflexion der Sonnenstrahlung an urbanen Bodenoberflächen, sowie deren Einfluss auf die Bestimmung der optischen Dicke von Aerosolpartikeln aus Satellitendaten. Zu diesem Zweck wurden flugzeuggetragene Messungen der spektral aufgelösten, reflektierten solaren Strahlung durchgeführt. In dieser Arbeit werden Messungen mit dem SMART-Albedometer (Spectral Modular Airborne Radiation measurement sysTem) präsentiert, die im Rahmen zweier Messkampagnen in Leipzig im September 2007 und in Zhongshan, China im Dezember 2009 erfasst wurden. Die spektrale Bodenreflektivität und Bodenalbedo wurden aus den spektralen Messungen der aufwärtsgerichteten Stahldichte (Radianz) und Strahlungsflussdichte (Irradianz) bestimmt. Dazu wurden eindimensionale Strahlungsübertragungsrechnungen durchgeführt. Der Einfluss der Flughöhe auf die Bodenreflektivität und Bodenalbedo wird anhand eines Messbeispiels, sowie einer Modellstudie mit ein- und dreidimensionalen Strahlungsübertragungsrechnungen diskutiert. Für beide Untersuchungsgebiete, Leipzig und Zhongshan, wird die Heterogenität der Reflexion solarer Strahlung an urbanen Oberflächen gezeigt. Der Einfluss der im operationellen Aerosolalgorithmus des satellitengetragenen Instrumentes MODIS (MODerate resolution Imaging Spectroradiometer) getroffenen Annahmen zur Bodenreflektivität auf die optische Dicke von Aerosolpartikeln, wurde mittels der gemessenen spektralen Bodenreflektivität und einer auf Strahlungsübertragungsrechnungen basierenden Modellstudie quantifiziert. Ein linearer Zusammenhang zwischen Bodenreflektivität und optischer Dicke von Aerosolpartikeln wird für beide Fallbeispiele gezeigt. Mittels der Messungen in Zhongshan kann bestätigt werden, dass die Bodenreflektivität für urbane Oberflächen im Aerosolalgorithmus unterschätzt wird. Im Rahmen der Modellstudie wird die Sensitivität des Aerosolalgorithmus auf die programminternen Annahmen zur Bodenreflektivität quantifiziert.
|
5 |
Einfluss der Erhöhung der Oberflächenalbedo in Sibirien auf die Zirkulation in der mittleren AtmosphäreAdler, A., Mewes, Daniel, Jacobi, Christoph 15 March 2021 (has links)
Es wird angenommen, dass die Zirkulation der Nordhemisphäre durch den Rückgang von Meereis in der Arktis und der Zunahme der Oberflächenalbedo in Sibirien beeinflusst wird. Letzteres wurde mit dem aktuellen atmosphärischen Zirkulationsmodell ICON getestet. Die Albedo über Sibirien wurde innerhalb eines
Experimentes erhöht, und zwar auf Werte welche vergleichbar mit denen über dem
grönländischen Eisschild sind. Es wurde festgestellt, dass in den Wintermonaten
Dezember und Januar die vertikale Wellenausbreitung stärker in die Stratosphäre reicht; dem folgt auch die in der Theorie erwartete Erwärmung in der Stratosphäre. / The Northern hemisphere circulation is supposed to change due to changed
sea-ice cover in the Arctic and the increase of Siberian surface albedo. The latter is tested using the state of the art atmospheric circulation model ICON. We artificially increased the albedo of Siberia to values comparable to the Greenland ice sheet to investigate the change of vertical wave propagation and the general change of the background circulation. It was found for the winter season that the increased albedo results in increased vertical wave propagation for December and January. This is accompanied by a warming of the stratosphere that was found for the whole winter.
|
6 |
Einfluss der Bodenalbedo und Bodenreflektivität von urbanen Oberflächen auf die Ableitung der optischen Dicke von Aerosolpartikeln aus SatellitenmessungenMey, Britta 26 March 2013 (has links)
Diese Dissertation ist innerhalb eines Teilprojekts des Schwerpunktprogramms SPP1233 ”Megacities Megachallenge - Informal Dynamics of Global Change“ entstanden. Thema der vorliegenden Arbeit ist die Untersuchung der heterogenen Reflexion der Sonnenstrahlung an urbanen Bodenoberflächen, sowie deren Einfluss auf die Bestimmung der optischen Dicke von Aerosolpartikeln aus Satellitendaten. Zu diesem Zweck wurden flugzeuggetragene Messungen der spektral aufgelösten, reflektierten solaren Strahlung durchgeführt. In dieser Arbeit werden Messungen mit dem SMART-Albedometer (Spectral Modular Airborne Radiation measurement sysTem) präsentiert, die im Rahmen zweier Messkampagnen in Leipzig im September 2007 und in Zhongshan, China im Dezember 2009 erfasst wurden. Die spektrale Bodenreflektivität und Bodenalbedo wurden aus den spektralen Messungen der aufwärtsgerichteten Stahldichte (Radianz) und Strahlungsflussdichte (Irradianz) bestimmt. Dazu wurden eindimensionale Strahlungsübertragungsrechnungen durchgeführt. Der Einfluss der Flughöhe auf die Bodenreflektivität und Bodenalbedo wird anhand eines Messbeispiels, sowie einer Modellstudie mit ein- und dreidimensionalen Strahlungsübertragungsrechnungen diskutiert. Für beide Untersuchungsgebiete, Leipzig und Zhongshan, wird die Heterogenität der Reflexion solarer Strahlung an urbanen Oberflächen gezeigt. Der Einfluss der im operationellen Aerosolalgorithmus des satellitengetragenen Instrumentes MODIS (MODerate resolution Imaging Spectroradiometer) getroffenen Annahmen zur Bodenreflektivität auf die optische Dicke von Aerosolpartikeln, wurde mittels der gemessenen spektralen Bodenreflektivität und einer auf Strahlungsübertragungsrechnungen basierenden Modellstudie quantifiziert. Ein linearer Zusammenhang zwischen Bodenreflektivität und optischer Dicke von Aerosolpartikeln wird für beide Fallbeispiele gezeigt. Mittels der Messungen in Zhongshan kann bestätigt werden, dass die Bodenreflektivität für urbane Oberflächen im Aerosolalgorithmus unterschätzt wird. Im Rahmen der Modellstudie wird die Sensitivität des Aerosolalgorithmus auf die programminternen Annahmen zur Bodenreflektivität quantifiziert.
|
Page generated in 0.0411 seconds