• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intersections de deux quadriques et pinceaux de courbes de genre 1 /

Wittenberg, Olivier, January 1900 (has links)
Texte remanié de: Thèse de doctorat--Mathématiques--Université de Paris-Sud, 2005. Titre de soutenance : Principe de Hasse pour les surfaces de Del Pezzo de degré 4. / Mention parallèle de titre ou de responsabilité : Intersections of two quadrics and pencils of curves of genus 1. Introduction en anglais et en français. Bibliogr. p. 209-213.
2

Deux points de vue sur les variétés de Fano : géométrie du diviseur anticanonique et classification des surfaces à singularités 1/3(1,1) / Two viewpoints on Fano varieties : geometry of the anticanonical divisor and classification of surfaces with 1/3(1,1) singularities

Heuberger, Liana 23 June 2016 (has links)
Cette thèse concerne l'étude des variétés de Fano, qui sont des objets centraux de la classification des variétés algébriques. La première question abordée concerne les variétés de Fano lisses de dimension quatre. On cherche a étudier les potentielles singularités d'un diviseur anticanonique de sorte qu'on puisse les écrire sous une forme locale explicite. En tant qu'étape intermédiaire, on démontre aussi que ces points sont au plus des singularités terminales, c'est-à-dire les singularités les plus proches du cas lisse du point de vue de la géométrie birationnelle. On montre ensuite que ce dernier résultat se généralise en dimension arbitraire en admettant une conjecture de non-annulation de Kawamata.De façon complémentaire, on s¿intéresse à des variétés de Fano de dimension plus petite, mais admettant des singularités. Il s¿agit des surfaces de del Pezzo ayant des singularités de type 1/3(1,1). Ceci est l'exemple le plus simple de singularité rigide, c'est-à-dire qui reste inchangée à une déformation Q-Gorenstein près. On classifie entièrement ces objets en trouvant 29 familles. On obtient ainsi un tableau contenant des modèles de ces surfaces, qui pour la plupart sont des intersections complètes dans des variétés toriques. Ce travail s'inscrit dans un contexte plus large, qui a pour cible de calculer leur cohomologie quantique pour ensuite vérifier si deux conjectures en symmetrie miroir. / This thesis concerns Fano varieties, which are central objects within the classification of algebraic varieties.The first problem we discuss involves smooth Fano varieties of dimension four. We study the potential singularities of an anticanonical divisor and determine their explicit local expression. As an intermediate step, we show that they are terminal points, that is the singularities which are closest to the smooth case from the point of view of birational geometry. We then show that the latter result generalizes in arbitrary dimension if we suppose that a nonvanishing conjecture of Kawamata holds.The second approach is to examine Fano varieties of smaller dimensions which admit singularities. The objects we consider are log del Pezzo surfaces with 1/3(1,1) points. This is the simplest example of a rigid singularity, that is it remains unchanged under Q-Gorenstein deformations. We give a complete classification of these surfaces, finding 29 families. We also provide a table describing almost all of them as complete intersections in toric varieties. This work belongs to an overarching project that aims at studying mirror symmetry for del Pezzo surfaces with cyclic quotient singularities.
3

Real algebraic curves in real del Pezzo surfaces / Courbes algébriques réelles dans les surfaces de del Pezzo réelles

Manzaroli, Matilde 28 June 2019 (has links)
L’étude topologique des variétés algébriques réelles remonte au moins aux travaux de Harnack, Klein, et Hilbert au 19éme siecle; en particulier, la classification des types d’isotopie réalisés par les courbes algébriques réelles d’un degré fixé dans RP2 est un sujet qui a connu un essor considérable jusqu'à aujourd'hui. En revanche, en dehors des études concernants les surfaces de Hirzebruch et les surfaces de degré au plus 3 dans RP3, à peu près rien n’est connu dans le cas de surfaces ambiantes plus générales. Cela est du en particulier au fait que les variétés construites en utilisant le "patchwork" sont des hypersurfaces de variétés toriques. Or, il existe de nombreuses autre surfaces algébriques réelles. Parmi celles-ci se trouvent les surfaces rationnelles réelles, et plus particulièrement les surfaces rèelles minimales. Dans cette thèse, on élargit l’étude des types d’isotopie réalisés par les courbes algébriques réelles aux surfaces réelles minimales de del Pezzo de degré 1 et 2. En outre, on termine la classification des types topologiques réalisés par les courbes algébriques réelles séparantes et non-séparantes de bidegré (5,5) sur la quadrique ellipsoide. / The study of the topology of real algebraic varieties dates back to the work of Harnack, Klein and Hilbert in the 19th century; in particular, the isotopy type classification of real algebraic curves with a fixed degree in RP2 is a classical subject that has undergone considerable evolution. On the other hand, apart from studies concerning Hirzebruch surfaces and at most degree 3 surfaces in RP3, not much is known for more general ambient surfaces. In particular, this is because varieties constructed using the patchworking method are hypersurfaces of toric varieties. However, there are many other real algebraic surfaces. Among these are the real rational surfaces, and more particularly the $mathbb{R}$-minimal surfaces. In this thesis, we extend the study of the topological types realized by real algebraic curves to the real minimal del Pezzo surfaces of degree 1 and 2. Furthermore, we end the classification of separating and non-separating real algebraic curves of bidegree $(5,5)$ in the quadric ellipsoid.

Page generated in 0.0644 seconds