• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 165
  • 71
  • 31
  • 18
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 583
  • 82
  • 81
  • 56
  • 47
  • 43
  • 37
  • 35
  • 33
  • 31
  • 29
  • 29
  • 28
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Investigation of Three Carnitine Analogs as Surfactants and their Effect on the Solubility of Triamclinolone Acetonide

Matos, Aida Luz 01 January 1983 (has links) (PDF)
In the present study, acetyl carnitine, decanoyl carnitine, and palmitoyl carnitine were investigated for their surfactant and solubilizing properties. Decanoyl carnitine and palmitoyl carnitine were found to have surface-active properties while acetyl carnitine was without significant surfactant properties. Surface tension and contact angle were decreased by deanoyl and palmitoyl carnitine. The solubilizing effect of the carnitine analogs on triamcinolone acetonide was investigated. Results suggest that the hydrophobic chain length of carnitine analogs was an important factor affecting their surfactant and solubilizing properties. Palmitoyl and decanoyl carnitine demonstrated a greater solubilizing effect on triamcinolone acetonide than acetyl carnitine.
322

Effects of Surface Rheology in Free Surface Flows

Hansol Wee (14527112) 08 February 2023 (has links)
<p> </p> <p>Interfaces separating two fluids are incredibly complex physical structures and are common throughout science, technology, and nature. Examples from daily life include the air-water interface separating a water drop that is dripping from a leaky faucet from the surrounding air and the interface of a soap bubble (which actually consists of two interfaces) separating the interior of the bubble from its exterior. Other common examples from nature include interfaces between falling rain drops and the surrounding air, and the mist that one encounters at beaches, waterfalls, and fountains where the spray droplets are separated from the surrounding air by an interface. Interfaces and manipulating them are key to technological applications such as thin film coating flows and diverse processes involving drop-by-drop processing such as ink-jet printing, drop-wise manufacturing, spray coating, DNA microarraying, and chemical separations, e.g. extraction. Aside from the coating flows example, the aforementioned situations are all examples of free surface flows that involve abrupt and catastrophic topological changes of interfaces that include physical processes such as breakup (also called pinch-off) as in drop breakup, rupture as in liquid-film or liquid-sheet rupture, and coalescence as in drop or bubble coalescence (similar phenomena also arise in sintering and/or fusion of ceramic, metallic, and polymer particles). These topological changes entail what are referred to as finite-time hydrodynamic singularities. For example, at the location(s) where a drop breaks, the thickness of the drop locally tends to zero while fluid pressure and velocity diverge (hence the reason for the word singularity). In addition to hydrodynamic singularities, the presence of surface-active agents or surfactants at fluid interfaces in free surface flows is another reason scientists have been attracted to the study of such problems.</p> <p>Adsorption onto and lowering of the surface tension of a fluid interface by surfactants are exploited in applications such as enhanced oil recovery, coating flows, lung surfactants, drop/jet breakup, and film/sheet rupture, with the latter two being among the prime motivators for this PhD thesis. However, surfactant concentration can be nonuniform at the interface because surfactant molecules can be transported along it by convection and diffusion and also due to normal dilatation and tangential stretching of the interface. Thus, aside from simply lowering surface tension, nonuniformity in surfactant concentration causes gradients in surface tension and gives rise to tangential interfacial (Marangoni) stresses. The latter brings about rich physics including tears of wine, interfacial turbulence in mass transfer, and droplet bouncing. In addition to lowering surface tension and the Marangoni effect, surfactants may also induce surface rheological or viscous effects as surfactant molecules deform against each other. The primary goal of this thesis is to advance the understanding of surface rheological effects in situations involving the breakup of surfactant-covered liquid threads (which also includes jets and drops) and liquid sheets. The fundamental understanding developed in this thesis is likely to prove indispensable in and/or assist the development of new technologies where surface rheological effects are central to the processes at hand, e.g. in controlling drop size distributions and avoiding undesirable satellite droplets and/or misting. An initially unexpected but highly rewarding outcome of the research has been the development of techniques for the measurement of surface viscosities, a task that has heretofore proven to be a formidable challenge to experimentalists.</p> <p>In this thesis, surface rheological effects in free surface flows are examined through both analytical and numerical solution of the incompressible Navier-Stokes equations subjected to the traction boundary condition augmented by the Boussinesq-Scriven constitutive equation to account for surface viscous effects. Rigorous and robust numerical algorithms based on the Galerkin finite element (GFEM) method are developed for predictions of surfactant transport, surface rheological effects and hydrodynamics in response to the motion of moving boundaries. The accuracy of computational predictions is verified by demonstrating that computed results accord well with scaling theories.</p>
323

Toward an Equation of State for Biosurfactants

Ghobadi Fomeshi, Ahmadreza 17 September 2014 (has links)
No description available.
324

Various Non-Thermal Technologies and Their Effectiveness against Human Norovirus Surrogates

Predmore, Ashley N. 21 May 2015 (has links)
No description available.
325

Self Assembly In Aqueous And Non-aqueous Sugar-Oil Mixtures

Dave, Hiteshkumar Rajeshkumar 16 April 2009 (has links)
No description available.
326

Computational Study of Adiabatic Bubble Growth Dynamics from Submerged Orifices in Aqueous Solutions of Surfactants

Deodhar, Anirudh M. 18 September 2012 (has links)
No description available.
327

A Parametric Investigation of Gas Bubble Growth and Pinch-Off Dynamics from Capillary-Tube Orifices in Liquid Pools

Kalaikadal, Deepak Saagar 08 October 2012 (has links)
No description available.
328

CYCLODEXTRIN VERSATILITY

Schneiderman, Eva 11 October 2001 (has links)
No description available.
329

The Biodegradability of Polypropylene Glycols and Ethoxylated Surfactants within Hydraulic Fracturing Fluids

Heyob, Katelyn M. January 2015 (has links)
No description available.
330

Asymmetric Hybrid Giant Molecules: Precise Synthesis and Phase Diagrams

Bai, Ruobing 10 June 2016 (has links)
No description available.

Page generated in 0.0575 seconds