• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of deep learning methods for industrial automation

Onning, Ragnar January 2023 (has links)
The rise and adaptation of the transformer architecture from natural language processing to visual tasks have proven a useful and powerful tool. Subsequent architectures such as visual transformers (ViT) and shifting window (SWIN) transformers have proven to be comparable and oftentimes exceed convolutional neural networks (CNNs) in terms of accuracy. However, for mobile vision tasks and limited hardware, the computational complexity of the transformer architecture is an impediment. This project aims to answer the question of whether the Swin Transformer can be adapted towards lightweight and low latency classification as a basis for industrial automation, and how it compares to CNNs for a specific task. A case study from the logging industry, binary classification of wooden boards on chain conveyors, will serve as the basis of this evaluation. For these purposes, a novel dataset has been collected and annotated. The results of this project include an overview of the respective architectures and their performance for different implementations on the classification task. Both architectures exhibited sufficient accuracy, while the CNN models performed best for the specific case study.
2

Comparative Analysis of Transformer and CNN Based Models for 2D Brain Tumor Segmentation

Träff, Henrik January 2023 (has links)
A brain tumor is an abnormal growth of cells within the brain, which can be categorized into primary and secondary tumor types. The most common type of primary tumors in adults are gliomas, which can be further classified into high-grade gliomas (HGGs) and low-grade gliomas (LGGs). Approximately 50% of patients diagnosed with HGG pass away within 1-2 years. Therefore, the early detection and prompt treatment of brain tumors are essential for effective management and improved patient outcomes.  Brain tumor segmentation is a task in medical image analysis that entails distinguishing brain tumors from normal brain tissue in magnetic resonance imaging (MRI) scans. Computer vision algorithms and deep learning models capable of analyzing medical images can be leveraged for brain tumor segmentation. These algorithms and models have the potential to provide automated, reliable, and non-invasive screening for brain tumors, thereby enabling earlier and more effective treatment. For a considerable time, Convolutional Neural Networks (CNNs), including the U-Net, have served as the standard backbone architectures employed to address challenges in computer vision. In recent years, the Transformer architecture, which already has firmly established itself as the new state-of-the-art in the field of natural language processing (NLP), has been adapted to computer vision tasks. The Vision Transformer (ViT) and the Swin Transformer are two architectures derived from the original Transformer architecture that have been successfully employed for image analysis. The emergence of Transformer based architectures in the field of computer vision calls for an investigation whether CNNs can be rivaled as the de facto architecture in this field.  This thesis compares the performance of four model architectures, namely the Swin Transformer, the Vision Transformer, the 2D U-Net, and the 2D U-Net which is implemented with the nnU-Net framework. These model architectures are trained using increasing amounts of brain tumor images from the BraTS 2020 dataset and subsequently evaluated on the task of brain tumor segmentation for both HGG and LGG together, as well as HGG and LGG individually. The model architectures are compared on total training time, segmentation time, GPU memory usage, and on the evaluation metrics Dice Coefficient, Jaccard Index, precision, and recall. The 2D U-Net implemented using the nnU-Net framework performs the best in correctly segmenting HGG and LGG, followed by the Swin Transformer, 2D U-Net, and Vision Transformer. The Transformer based architectures improve the least when going from 50% to 100% of training data. Furthermore, when data augmentation is applied during training, the nnU-Net outperforms the other model architectures, followed by the Swin Transformer, 2D U-Net, and Vision Transformer. The nnU-net benefited the least from employing data augmentation during training, while the Transformer based architectures benefited the most.  In this thesis we were able to perform a successful comparative analysis effectively showcasing the distinct advantages of the four model architectures under discussion. Future comparisons could incorporate training the model architectures on a larger set of brain tumor images, such as the BraTS 2021 dataset. Additionally, it would be interesting to explore how Vision Transformers and Swin Transformers, pre-trained on either ImageNet- 21K or RadImageNet, compare to the model architectures of this thesis on brain tumor segmentation.
3

Teaching an AI to recycle by looking at scrap metal : Semantic segmentation through self-supervised learning with transformers / Lär en AI att källsortera genom att kolla på metallskrot

Forsberg, Edwin, Harris, Carl January 2022 (has links)
Stena Recycling is one of the leading recycling companies in Sweden and at their facility in Halmstad, 300 tonnes of refuse are handled every day where aluminium is one of the most valuable materials they sort. Today, most of the sorting process is done automatically, but there are still parts of the refuse that are not correctly sorted. Approximately 4\% of the aluminium is currently not properly sorted and goes to waste. Earlier works have investigated using machine vision to help in the sorting process at Stena Recycling. However, consistently through all these previous works, there is a problem in gathering enough annotated data to train the machine learning models. This thesis aims to investigate how machine vision could be used in the recycling process and if pre-training models using self-supervised learning can alleviate the problem of gathering annotated data and yield an improvement. The results show that machine vision models could viably be used in an information system to assist operators. This thesis also shows that pre-training models with self-supervised learning may yield a small increase in performance. Furthermore, we show that models pre-trained using self-supervised learning also appear to transfer the knowledge learned from images created in a lab environment to images taken at the recycling plant.
4

Instance Segmentation on depth images using Swin Transformer for improved accuracy on indoor images / Instans-segmentering på bilder med djupinformation för förbättrad prestanda på inomhusbilder

Hagberg, Alfred, Musse, Mustaf Abdullahi January 2022 (has links)
The Simultaneous Localisation And Mapping (SLAM) problem is an open fundamental problem in autonomous mobile robotics. One of the latest most researched techniques used to enhance the SLAM methods is instance segmentation. In this thesis, we implement an instance segmentation system using Swin Transformer combined with two of the state of the art methods of instance segmentation namely Cascade Mask RCNN and Mask RCNN. Instance segmentation is a technique that simultaneously solves the problem of object detection and semantic segmentation. We show that depth information enhances the average precision (AP) by approximately 7%. We also show that the Swin Transformer backbone model can work well with depth images. Our results also show that Cascade Mask RCNN outperforms Mask RCNN. However, the results are to be considered due to the small size of the NYU-depth v2 dataset. Most of the instance segmentation researches use the COCO dataset which has a hundred times more images than the NYU-depth v2 dataset but it does not have the depth information of the image.

Page generated in 0.0638 seconds