• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 32
  • 13
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 121
  • 25
  • 25
  • 14
  • 12
  • 12
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Existing fabric as generator for a 'New Identity' : re-connecting lost space

Botha, Edward 27 November 2008 (has links)
The thesis challenges how the existing fabric can be adapted and transformed to generate similar benefits to that of a new construction. / Dissertation (MArch(Prof))--University of Pretoria, 2009. / Architecture / unrestricted
22

Investigation of the physiological responses in soybean and common bean to water deficit

Amsalu Fenta, Berhanu 04 May 2013 (has links)
Drought causes considerable reduction of legume productivity and significantly threatens the food security, and this situation is expected to be aggravated due to climate change. In soybean and common bean, water resource capturing through plant root architectural plasticity and the role of symbiotic nitrogen fixation have not been investigated in greater detail yet. This study was therefore conducted to identify and apply useful morphological and physiological performance markers (traits) for selection of drought-tolerant common bean and soybean cultivars under both controlled phytotron and field conditions that might be applicable as markers in future legume breeding programs. In soybean, traits related to above ground performance, such as photosynthesis, biomasses, and stomatal conductance, were related to parameters for nitrogen acquisition in nodules. The ability to maintain vigorous shoot growth under drought-induced nitrogen limitation was identified as an important trait that can be used to select for improved drought tolerance. Further, experiments carried out growing different common bean inbred lines under controlled phytotron conditions revealed the importance of growth and gas exchange parameters as well as nitrogen fixing ability as performance markers to select superior performing bean lines for growth under drought. As a further result, the strong association of symbiotic nitrogen fixation with CO2 assimilation and stomatal conductance was also ascertained. In field experiments the effective use of water through enhanced lateral root development and maintaining the water status of the plant was found to be crucial for enhanced productivity under drought, with root morphology traits (root length, area and volume) as well as root architectural traits (first whorl angle, basal root number and adventitious root branching density) significantly related to seed yield. Measurement of these traits might be added to future bean varietal improvement programs. Further, a direct relationship between both water use efficiency (WUE) estimated using carbon isotope discrimination (CID) and nitrogen fixation (15N abundance) with root morphological and architectural traits (root length, area and volume, basal root number, 1st as well as 2nd whorl angles) was identified. CID (WUE) and 15N abundance (SNF ability) had a direct relationship with each other and also with productivity traits (seed yield and pod harvest index). Soybean field experiments verified the importance of root system architecture and morphology for providing drought tolerance with root architectural traits, tap and lateral roots (diameter and branching density) and morphological traits (root length, surface area and volume) contributing to better performance under drought. Moreover, the strong association of CID (WUE) with ä15N (SNF), root traits as well as seed yield in soybean exposed to drought was ascertained. Findings suggested that higher performance in CID under drought stress may be due to higher CO2 assimilation and better N2 fixation resulting in better root system architecture and morphology of the drought-tolerant cultivar through maintenance of the water status of the plant for efficient biological activity. Overall the study has generated new knowledge about the use of physiological markers (traits) that can be used widely for legume evaluation under drought suitable for both phytotron and field studies. / Thesis (PhD)--University of Pretoria, 2012. / Plant Science / unrestricted
23

Fylogenetické postavení rodu Polymastix a jeho prokaryotických symbiontů / Phylogenetic Position of Genus Polymastix and Its Prokaryotic Symbionts

Kubánková, Aneta January 2020 (has links)
Polymastigidae is one of the five families of oxymonads (Metamonada, Preaxostyla). It includes small flagellates inhabiting the digestive tract of insects. Recently obtained molecular phylogenetic data have questioned the monophyly of this group. The type genus of the family Polymastigidae is Polymastix. The phylogenetic position of this genus has not been studied yet, although this information could significantly help to clarify the relationships within this group. This work provides the first sequence data of this genus, which we have obtained using a single- cell genome amplification and subsequent whole genome sequencing on Illumina HiSeq X Ten (Macrogene) from three individuals of P. melolonthae inhabiting the posterior hindgut of crane fly larvae. Phylogenetic analysis based on the gene for 18S rRNA, EF-1α and HSP90 yielded several roughly equally probable hypotheses about the position of this genus within Oxymonadida. The first of them places the genus Polymastix in a close proximity to the genus Streblomastix, according to the second hypothesis, Polymastix is sister to Termitimonas travisae. A characteristic feature of this protist is ectosymbiotic bacteria attached to its surface. These were necessarily amplified and sequenced together with their hosts, which allowed us to obtain sequence...
24

The Isolation of Some Nonsymbiotic Nitrogen Fixing Organisms Occurring in Some Utah Soils

Johnson, Richard B. 01 May 1941 (has links)
Plants require ten elements in appreciable quantity and several others in smaller amount for their continued and normal growth. Three of these necessary elements, nitrogen, phosphorus, and potassium are most important because they occur in the soil in quantities which are usually small in proportion to that needed by the plants. Of these three, nitrogen is in most cases the limiting factor because of the ease with which in may be leached from the soil and comparatively large amount assimilated by plants. These factors coupled with the inhibiting high cost of artificially replacing it in the form of commercial fertilizers, make its conservation and efficient utilization of the utmost importance.
25

In vivo dynamics of the quorum sensing-related interplay during symbiotic interaction between the nitrogen fixing bacterium, Sinorhizobium meliloti, and its eukaryotic host, Medicago truncatula

Shakhatreh, Muhamad Ali Khalil 09 February 2012 (has links)
No description available.
26

The Roles of the Malic Enzymes of Rhizobium (Sinorhizobium) Meliloti in Symbiotic Nitrogen Fixation / Roles of Malic Enzymes of R. Meliloti in Symbiosis

Cowie, Alison 09 1900 (has links)
The genome of 𝘙. 𝘮𝘦𝘭𝘪𝘭𝘰𝘵𝘪 contains two genes for malic enzymes. One uses NAD⁺ as a cofactor (𝘥𝘮𝘦) and one utilizes NADP⁺ (𝘵𝘮𝘦). The two enzymes have been purified and the genes cloned and sequenced. Loss of TME enzyme function gives no detectable phenotype in either 𝘙. 𝘮𝘦𝘭𝘪𝘭𝘰𝘵𝘪 grown in culture or in bacteroids. Loss of DME function gives no detectable phenotype in 𝘙. 𝘮𝘦𝘭𝘪𝘭𝘰𝘵𝘪 grown in culture but does result in bacteroids that are unable to fix nitrogen (Fix⁻). Expression of 𝘵𝘮𝘦 is reduced in bacteroids whereas 𝘥𝘮𝘦 expression remains unchanged. In order to overexpress 𝘵𝘮𝘦 in bacteroids a fusion gene was constructed with the 𝘥𝘮𝘦 promoter driving expression of the 𝘵𝘮𝘦 structural gene (𝘥𝘵𝘮𝘦). The 𝘥𝘵𝘮𝘦 gene was expressed and functional in 𝘙. 𝘮𝘦𝘭𝘪𝘭𝘰𝘵𝘪 cells grown in culture, but alfalfa plants inoculated with strains expressing only the 𝘥𝘵𝘮𝘦 gene were Fix⁻. In addition the NAD⁺-dependent malic enzyme gene from 𝘚𝘵𝘳𝘦𝘱𝘵𝘰𝘤𝘰𝘤𝘤𝘶𝘴 𝘣𝘰𝘷𝘪𝘴 (𝘮𝘢𝘦𝘌) was similarly cloned downstream of the 𝘥𝘮𝘦 promoter. The fusion gene 𝘥𝘮𝘢𝘦𝘌 was expressed in 𝘙. 𝘮𝘦𝘭𝘪𝘭𝘰𝘵𝘪 cells grown in culture, surprisingly plants inoculated with strains expressing only the 𝘥𝘮𝘢𝘦𝘌 gene showed a Fix⁻ phenotype. A truncated 𝘥𝘮𝘦 gene was constructed which contained only the N-terminal, malic enzyme domain of the protein (𝘥𝘮𝘦Δ𝘗𝘴𝘵). The truncated enzyme was expressed and active in 𝘙. 𝘮𝘦𝘭𝘪𝘭𝘰𝘵𝘪 cells grown in culture and gave a Fix⁺ phenotype when inoculated onto alfalfa plants. / Thesis / Master of Science (MS)
27

TOWARDS THE MINIMAL SYMBIOTIC GENOME OF SINORHIZOBIUM MELILOTI

Huang, Jiarui January 2019 (has links)
Sinorhizobium meliloti is a model bacterium for the study of symbiotic nitrogen fixation (SNF). It infects the roots of alfalfa as well as some other legumes and differentiates into N2-fixing bacteroids within the plant cells of specialized nodule organs. To understand genes essential for SNF and, in the longer term, to facilitate the manipulation of this SNF process for agricultural purposes, it is highly desirable to construct the minimal genome for SNF in this organism. S. meliloti harbors two replicons required for SNF, a 1.7-Mb chromid (pSymB) and a 1.4-Mb megaplasmid (pSymA). A previous deletion analysis revealed that only four gene regions, accounting for <12% of the total sequences of pSymA and pSymB that, were essential for SNF. In the first part of the thesis, I report the cloning of these two pSymA SNF-essential regions on a plasmid (pTH3255) in Escherichia coli, and the integration of this plasmid into the genome of a ∆pSymA S. meliloti derivative strain (the strain was named as RmP4291 after integration). Plant root dry weight and nitrogenase-catalyzed acetylene reduction assays were carried out on RmP4291 with four host plants, including Medicago sativa, Medicago truncatula, Melilotus alba and Melilotus officinalis. Nodule kinetic assays were also performed on RmP4291 and RmP110(wt). The results showed that the SNF-essential regions from pSymA were sufficient to restore the symbiotic capabilities to the ∆pSymA derivative strain with all the host plants tested, except a significant reduction (~40%) in SNF by RmP4291 was noticed on M. officinalis compared to that by wildtype S. meliloti. A higher alfalfa nodulation efficiency of RmP4291 compared to that of wildtype RmP110 was also discovered. In the second part of the thesis, a histochemical staining method for S. meliloti nodules was developed by integrating the marker genes gusA (β-glucuronidase) and celB (β-glucosidase) into the S. meliloti genome. This staining method was found to be useful in the study of nodule competitiveness. A nodule competition assay was carried out between RmP4291 and RmP110 using the new staining method. RmP4291 was found to be significantly reduced in nodulation competitiveness compared to wildtype S. meliloti. The development of the histochemical staining method for S. meliloti nodules will accelerate the identification of genes required for nodule competitiveness in the organism, which will be of crucial importance to the construction of the minimal genome strains with high SNF efficiency. / Thesis / Master of Science (MSc) / Nitrogen is one of the critical elements for life. Biological nitrogen fixation plays a crucial role in providing fixed nitrogen for the ecosystem on Earth. Our Laboratory has endeavored to establish a minimal symbiotic genome in Sinorhizobium meliloti, a model nitrogen fixing bacterium which forms symbiosis with certain kinds of legumes. Building this minimal symbiotic genome will improve our understanding of the symbiotic nitrogen fixation process in S. meliloti at gene level. It may also help in eventually introducing a nitrogen fixation system into other organisms. In this study, the minimal symbiotic genome of the pSymA replicon in S. meliloti was constructed. In addition, a staining method to detect specific S. meliloti strains in nodules was established. This method is potentially useful in finding genes related to nodule competitiveness, and these are potentially important for augmenting the genes that constitute the minimal symbiotic genome.
28

Time Series Photometry of the Symbiotic Star V1835 Aql and New Variable Stars in Aquila

Caddy, Robert V. 24 July 2018 (has links)
No description available.
29

An Inquiry Into Personality Development: A Theory of Symbiotic Relationship

Chittick, Kenneth William 01 January 1967 (has links)
This thesis presents an inquiry into personality development, that is, it advances a theory of personality formation based on the symbiotic relationship between mother and child. It will show indications from the research of Rappoport, Ottinger and Simmons, and the writings of Mahler, that in the relationship between the infant and its mother, the infant at first thinks that the mother is an actual part of its own wholeness. Therefore, the theory will attempt to explain how a normal, a neurotic or a psychotic personality structure of later years can be traced back to the symbiotic phase of the infant's development. The symbiotic phase is considered by Mahler to terminate about thirty-six months after birth, but this theory will stress that the critical stage in personality development is reached somewhere before the first year of life is complete.
30

Surging Seepage: A Triple Bond Accretion System

Brown, Jacqueline 01 January 2008 (has links)
My current work revels in a state of flux. I strive for the work to be electrically charged, conveying a feverish sense of immediacy and vitality that implies motion and frenetic energy. The work is an accretion of brightly colored biomorphic forms that extend out from the wall and onto the floor. Viscous parts ooze and drip while others are globular and bulbous. The hyper-organic forms suggest a paradoxical state of both ripening and rotting, becoming and unbecoming. The work is an attempt to traverse between seemingly divergent constructs, some of which include: growth and decay, the artificial and the natural, the body and the landscape, the infinite and the miniscule, and the real and the imagined. I intend for the works to be suggestive of mutation, of systems becoming cross-wired and melting into each other.

Page generated in 0.0287 seconds