• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uso dos métodos clássico e bayesiano para os modelos não-lineares heterocedásticos simétricos / Use of the classical and bayesian methods for nonlinear heterocedastic symmetric models

Macêra, Márcia Aparecida Centanin 21 June 2011 (has links)
Os modelos normais de regressão têm sido utilizados durante muitos anos para a análise de dados. Mesmo nos casos em que a normalidade não podia ser suposta, tentava-se algum tipo de transformação com o intuito de alcançar a normalidade procurada. No entanto, na prática, essas suposições sobre normalidade e linearidade nem sempre são satisfeitas. Como alternativas à técnica clássica, foram desenvolvidas novas classes de modelos de regressão. Nesse contexto, focamos a classe de modelos em que a distribuição assumida para a variável resposta pertence à classe de distribuições simétricas. O objetivo geral desse trabalho é a modelagem desta classe no contexto bayesiano, em particular a modelagem da classe de modelos não-lineares heterocedásticos simétricos. Vale ressaltar que esse trabalho tem ligação com duas linhas de pesquisa, a saber: a inferência estatística abordando aspectos da teoria assintótica e a inferência bayesiana considerando aspectos de modelagem e critérios de seleção de modelos baseados em métodos de simulação de Monte Carlo em Cadeia de Markov (MCMC). Uma primeira etapa consiste em apresentar a classe dos modelos não-lineares heterocedásticos simétricos bem como a inferência clássica dos parâmetros desses modelos. Posteriormente, propomos uma abordagem bayesiana para esses modelos, cujo objetivo é mostrar sua viabilidade e comparar a inferência bayesiana dos parâmetros estimados via métodos MCMC com a inferência clássica das estimativas obtidas por meio da ferramenta GAMLSS. Além disso, utilizamos o método bayesiano de análise de influência caso a caso baseado na divergência de Kullback-Leibler para detectar observações influentes nos dados. A implementação computacional foi desenvolvida no software R e para detalhes dos programas pode ser consultado aos autores do trabalho / The normal regression models have been used for many years for data analysis. Even in cases where normality could not be assumed, was trying to be some kind of transformation in order to achieve the normality sought. However, in practice, these assumptions about normality and linearity are not always satisfied. As alternatives to classical technique new classes of regression models were developed. In this context, we focus on the class of models in which the distribution assumed for the response variable belongs to the symmetric distributions class. The aim of this work is the modeling of this class in the bayesian context, in particular the modeling of the nonlinear models heteroscedastic symmetric class. Note that this work is connected with two research lines, the statistical inference addressing aspects of asymptotic theory and the bayesian inference considering aspects of modeling and criteria for models selection based on simulation methods Monte Carlo Markov Chain (MCMC). A first step is to present the nonlinear models heteroscedastic symmetric class as well as the classic inference of parameters of these models. Subsequently, we propose a bayesian approach to these models, whose objective is to show their feasibility and compare the estimated parameters bayesian inference by MCMC methods with the classical inference of the estimates obtained by GAMLSS tool. In addition, we use the bayesian method of influence analysis on a case based on the Kullback-Leibler divergence for detecting influential observations in the data. The computational implementation was developed in the software R and programs details can be found at the studys authors
2

Uso dos métodos clássico e bayesiano para os modelos não-lineares heterocedásticos simétricos / Use of the classical and bayesian methods for nonlinear heterocedastic symmetric models

Márcia Aparecida Centanin Macêra 21 June 2011 (has links)
Os modelos normais de regressão têm sido utilizados durante muitos anos para a análise de dados. Mesmo nos casos em que a normalidade não podia ser suposta, tentava-se algum tipo de transformação com o intuito de alcançar a normalidade procurada. No entanto, na prática, essas suposições sobre normalidade e linearidade nem sempre são satisfeitas. Como alternativas à técnica clássica, foram desenvolvidas novas classes de modelos de regressão. Nesse contexto, focamos a classe de modelos em que a distribuição assumida para a variável resposta pertence à classe de distribuições simétricas. O objetivo geral desse trabalho é a modelagem desta classe no contexto bayesiano, em particular a modelagem da classe de modelos não-lineares heterocedásticos simétricos. Vale ressaltar que esse trabalho tem ligação com duas linhas de pesquisa, a saber: a inferência estatística abordando aspectos da teoria assintótica e a inferência bayesiana considerando aspectos de modelagem e critérios de seleção de modelos baseados em métodos de simulação de Monte Carlo em Cadeia de Markov (MCMC). Uma primeira etapa consiste em apresentar a classe dos modelos não-lineares heterocedásticos simétricos bem como a inferência clássica dos parâmetros desses modelos. Posteriormente, propomos uma abordagem bayesiana para esses modelos, cujo objetivo é mostrar sua viabilidade e comparar a inferência bayesiana dos parâmetros estimados via métodos MCMC com a inferência clássica das estimativas obtidas por meio da ferramenta GAMLSS. Além disso, utilizamos o método bayesiano de análise de influência caso a caso baseado na divergência de Kullback-Leibler para detectar observações influentes nos dados. A implementação computacional foi desenvolvida no software R e para detalhes dos programas pode ser consultado aos autores do trabalho / The normal regression models have been used for many years for data analysis. Even in cases where normality could not be assumed, was trying to be some kind of transformation in order to achieve the normality sought. However, in practice, these assumptions about normality and linearity are not always satisfied. As alternatives to classical technique new classes of regression models were developed. In this context, we focus on the class of models in which the distribution assumed for the response variable belongs to the symmetric distributions class. The aim of this work is the modeling of this class in the bayesian context, in particular the modeling of the nonlinear models heteroscedastic symmetric class. Note that this work is connected with two research lines, the statistical inference addressing aspects of asymptotic theory and the bayesian inference considering aspects of modeling and criteria for models selection based on simulation methods Monte Carlo Markov Chain (MCMC). A first step is to present the nonlinear models heteroscedastic symmetric class as well as the classic inference of parameters of these models. Subsequently, we propose a bayesian approach to these models, whose objective is to show their feasibility and compare the estimated parameters bayesian inference by MCMC methods with the classical inference of the estimates obtained by GAMLSS tool. In addition, we use the bayesian method of influence analysis on a case based on the Kullback-Leibler divergence for detecting influential observations in the data. The computational implementation was developed in the software R and programs details can be found at the studys authors
3

Estimación de la zona crítica de diseño en naves industriales con diferentes alturas libres que soporten puentes grúas de diferentes capacidades de carga / Estimation of the critical design zone in industrial Buildings with different free heights that support crane bridges with different load capacities

Cuadros Torres, David Edgardo, Jiménez Vargas, Gef Sinder 08 May 2021 (has links)
El presente estudio tiene como finalidad encontrar la zona crítica de diseño en naves industriales que combinen la premisa de diferentes alturas libres con la ubicación de distintas capacidades de carga de un puente grúa. Se propuso un total de nueve modelos simétricos en planta con una disposición de pórticos a dos aguas. El sistema estructural contempla pórticos a momento y pórticos arriostrados. El recorrido del puente grúa de manera longitudinal y transversal determinó entre 10 a 90 ubicaciones donde la carga del puente grúa está concentrada para el análisis. Las cargas contempladas para el análisis y diseño fueron las producidas por carga muerta, carga viva, viento y sismo. Para el diseño de los elementos de las naves industriales se ha considerado la Norma E.090 del Reglamento Nacional de Edificaciones y como complemento se ha utilizado las normas: ASCE y AISC. El diseño de los elementos estructurales se basó en el método LRFD. El resultado de la investigación encontró una zona crítica de diseño en los márgenes izquierdo y derecho de cada modelo. Los valores de ambos márgenes correspondientes a la capacidad de carga del puente grúa son iguales en cada una de sus posiciones simétricas. Se comprobó que en la zona crítica existe una única ubicación que genera los máximos desempeños en los elementos de las naves industriales. Se determinó los ratios de costo de los perfiles de las naves industriales; los cuales, varían entre 51 y 190 dólares por metro cuadrado. / The purpose of this study is to find the critical design area in industrial buildings that combine the premise of different free heights with the location of different load capacities of an overhead crane. A total of nine symmetrical models were proposed in plan with a gabled portico arrangement. The structural system includes frames at the moment and braced frames. The span of the overhead crane longitudinally and transversely determined between 10 to 90 locations where the overhead crane load is concentrated for the analysis. The loads considered for the analysis and design were those produced by dead load, live load, wind and earthquake. For the design of the elements of the industrial buildings, Standard E.090 of the National Building Regulations has been considered and as a complement the following standards have been used: ASCE and AISC. The design of the structural elements was based on the LRFD method. The result of the investigation found a critical design zone on the left and right margins of each model. The values ​​of both margins corresponding to the load capacity of the overhead crane are equal in each of their symmetrical positions. It was found that in the critical zone there is a single location that generates the maximum performances in the elements of the industrial buildings. The cost ratios of the profiles of the industrial buildings were determined; which, vary between 51 and 190 dollars per square meter. / Tesis
4

Modelos parcialmente lineares com erros simétricos autoregressivos de primeira ordem / Symmetric partially linear models with first-order autoregressive errors.

Relvas, Carlos Eduardo Martins 19 April 2013 (has links)
Neste trabalho, apresentamos os modelos simétricos parcialmente lineares AR(1), que generalizam os modelos parcialmente lineares para a presença de erros autocorrelacionados seguindo uma estrutura de autocorrelação AR(1) e erros seguindo uma distribuição simétrica ao invés da distribuição normal. Dentre as distribuições simétricas, podemos considerar distribuições com caudas mais pesadas do que a normal, controlando a curtose e ponderando as observações aberrantes no processo de estimação. A estimação dos parâmetros do modelo é realizada por meio do critério de verossimilhança penalizada, que utiliza as funções escore e a matriz de informação de Fisher, sendo todas essas quantidades derivadas neste trabalho. O número efetivo de graus de liberdade e resultados assintóticos também são apresentados, assim como procedimentos de diagnóstico, destacando-se a obtenção da curvatura normal de influência local sob diferentes esquemas de perturbação e análise de resíduos. Uma aplicação com dados reais é apresentada como ilustração. / In this master dissertation, we present the symmetric partially linear models with AR(1) errors that generalize the normal partially linear models to contain autocorrelated errors AR(1) following a symmetric distribution instead of the normal distribution. Among the symmetric distributions, we can consider heavier tails than the normal ones, controlling the kurtosis and down-weighting outlying observations in the estimation process. The parameter estimation is made through the penalized likelihood by using score functions and the expected Fisher information. We derive these functions in this work. The effective degrees of freedom and asymptotic results are also presented as well as the residual analysis, highlighting the normal curvature of local influence under different perturbation schemes. An application with real data is given for illustration.
5

Modelos parcialmente lineares com erros simétricos autoregressivos de primeira ordem / Symmetric partially linear models with first-order autoregressive errors.

Carlos Eduardo Martins Relvas 19 April 2013 (has links)
Neste trabalho, apresentamos os modelos simétricos parcialmente lineares AR(1), que generalizam os modelos parcialmente lineares para a presença de erros autocorrelacionados seguindo uma estrutura de autocorrelação AR(1) e erros seguindo uma distribuição simétrica ao invés da distribuição normal. Dentre as distribuições simétricas, podemos considerar distribuições com caudas mais pesadas do que a normal, controlando a curtose e ponderando as observações aberrantes no processo de estimação. A estimação dos parâmetros do modelo é realizada por meio do critério de verossimilhança penalizada, que utiliza as funções escore e a matriz de informação de Fisher, sendo todas essas quantidades derivadas neste trabalho. O número efetivo de graus de liberdade e resultados assintóticos também são apresentados, assim como procedimentos de diagnóstico, destacando-se a obtenção da curvatura normal de influência local sob diferentes esquemas de perturbação e análise de resíduos. Uma aplicação com dados reais é apresentada como ilustração. / In this master dissertation, we present the symmetric partially linear models with AR(1) errors that generalize the normal partially linear models to contain autocorrelated errors AR(1) following a symmetric distribution instead of the normal distribution. Among the symmetric distributions, we can consider heavier tails than the normal ones, controlling the kurtosis and down-weighting outlying observations in the estimation process. The parameter estimation is made through the penalized likelihood by using score functions and the expected Fisher information. We derive these functions in this work. The effective degrees of freedom and asymptotic results are also presented as well as the residual analysis, highlighting the normal curvature of local influence under different perturbation schemes. An application with real data is given for illustration.

Page generated in 0.0553 seconds