Spelling suggestions: "subject:"aymmetric tensor"" "subject:"asymmetric tensor""
1 |
Partículss relativístivas com spin e campos tensoriais antissimétricos / Relativistic particles with spin and anti symmetric tensor fieldsSandoval Junior, Leonidas 24 September 1990 (has links)
Neste trabalho, fazemos um estudo dos campos tensoriais antissimétricos em geral e, em particular, do campo tensorial antissimétrico de ordem dois. Utilizando o método de quantização BRST-BFV para teorias redutíveis no formalismo hamiltoniano, mostramos a equivalência quântica do campo tensorial antissimétrico de ordem dois não-massivo ao campo escalar em 4 dimensões e ao campo vetorial no gauge de Lorentz em 5 dimensões. Também é mostrada a equivalência entre as formulações de 1ª e 2ª ordem do campo tensorial antissimétrico de ordem dois. Por fim, é efetuada a quantização BRST-BFV de um modelo de partícula relativística com spin com duas supersimetrias acrescido de um termo Chern-Simons, mostrando que a amplitude de transição obtida equivale à amplitude de transição do \"rotacional\" de um campo tensorial antissimétrico de ordem qualquer. O caso massivo também é tratado brevemente. / In this work, we make a study of anti symmetric tensor fields in general, and, in particular, of the anti symmetric tensor fields of order two. Using the BRST-BFV quantization method for reducible theories in the Hamiltonian formalism, we show the quantum equivalence of the massless anti symmetric tensor field of order two to the scalar field in 4 dimensions, and to the vector field in the Lorentz gauge in 5 dimensions. It is also shown the quantum equivalence between the 1st and 2nd order formulations for the anti symmetric tensor field of order two. Finally, it is made the BRST-BFV quantization of a model of relativistic spinning particle with two super symmetries with a Chern-Simons term, showing that the transition amplitude obtained is equivalent to the transition amplitude for the field strength of an anti symmetric tensor field of any order. The massive case is also treated in breaf.
|
2 |
Partículss relativístivas com spin e campos tensoriais antissimétricos / Relativistic particles with spin and anti symmetric tensor fieldsLeonidas Sandoval Junior 24 September 1990 (has links)
Neste trabalho, fazemos um estudo dos campos tensoriais antissimétricos em geral e, em particular, do campo tensorial antissimétrico de ordem dois. Utilizando o método de quantização BRST-BFV para teorias redutíveis no formalismo hamiltoniano, mostramos a equivalência quântica do campo tensorial antissimétrico de ordem dois não-massivo ao campo escalar em 4 dimensões e ao campo vetorial no gauge de Lorentz em 5 dimensões. Também é mostrada a equivalência entre as formulações de 1ª e 2ª ordem do campo tensorial antissimétrico de ordem dois. Por fim, é efetuada a quantização BRST-BFV de um modelo de partícula relativística com spin com duas supersimetrias acrescido de um termo Chern-Simons, mostrando que a amplitude de transição obtida equivale à amplitude de transição do \"rotacional\" de um campo tensorial antissimétrico de ordem qualquer. O caso massivo também é tratado brevemente. / In this work, we make a study of anti symmetric tensor fields in general, and, in particular, of the anti symmetric tensor fields of order two. Using the BRST-BFV quantization method for reducible theories in the Hamiltonian formalism, we show the quantum equivalence of the massless anti symmetric tensor field of order two to the scalar field in 4 dimensions, and to the vector field in the Lorentz gauge in 5 dimensions. It is also shown the quantum equivalence between the 1st and 2nd order formulations for the anti symmetric tensor field of order two. Finally, it is made the BRST-BFV quantization of a model of relativistic spinning particle with two super symmetries with a Chern-Simons term, showing that the transition amplitude obtained is equivalent to the transition amplitude for the field strength of an anti symmetric tensor field of any order. The massive case is also treated in breaf.
|
3 |
Décomposition de petit rang, problèmes de complétion et applications : décomposition de matrices de Hankel et des tenseurs de rang faible / Low rank decomposition, completion problems and applications : low rank decomposition of Hankel matrices and tensorsHarmouch, Jouhayna 19 December 2018 (has links)
On étudie la décomposition de matrice de Hankel comme une somme des matrices de Hankel de rang faible en corrélation avec la décomposition de son symbole σ comme une somme des séries exponentielles polynomiales. On présente un nouvel algorithme qui calcule la décomposition d’un opérateur de Hankel de petit rang et sa décomposition de son symbole en exploitant les propriétés de l’algèbre quotient de Gorenstein . La base de est calculée à partir la décomposition en valeurs singuliers d’une sous-matrice de matrice de Hankel . Les fréquences et les poids se déduisent des vecteurs propres généralisés des sous matrices de Hankel déplacés de . On présente une formule pour calculer les poids en fonction des vecteurs propres généralisés au lieu de résoudre un système de Vandermonde. Cette nouvelle méthode est une généralisation de Pencil méthode déjà utilisée pour résoudre un problème de décomposition de type de Prony. On analyse son comportement numérique en présence des moments contaminés et on décrit une technique de redimensionnement qui améliore la qualité numérique des fréquences d’une grande amplitude. On présente une nouvelle technique de Newton qui converge localement vers la matrice de Hankel de rang faible la plus proche au matrice initiale et on montre son effet à corriger les erreurs sur les moments. On étudie la décomposition d’un tenseur multi-symétrique T comme une somme des puissances de produit des formes linéaires en corrélation avec la décomposition de son dual comme une somme pondérée des évaluations. On utilise les propriétés de l’algèbre de Gorenstein associée pour calculer la décomposition de son dual qui est définie à partir d’une série formelle τ. On utilise la décomposition d’un opérateur de Hankel de rang faible associé au symbole τ comme une somme des opérateurs indécomposables de rang faible. La base d’ est choisie de façon que la multiplication par certains variables soit possible. On calcule les coordonnées des points et leurs poids correspondants à partir la structure propre des matrices de multiplication. Ce nouvel algorithme qu’on propose marche bien pour les matrices de Hankel de rang faible. On propose une approche théorique de la méthode dans un espace de dimension n. On donne un exemple numérique de la décomposition d’un tenseur multilinéaire de rang 3 en dimension 3 et un autre exemple de la décomposition d’un tenseur multi-symétrique de rang 3 en dimension 3. On étudie le problème de complétion de matrice de Hankel comme un problème de minimisation. On utilise la relaxation du problème basé sur la minimisation de la norme nucléaire de la matrice de Hankel. On adapte le SVT algorithme pour le cas d’une matrice de Hankel et on calcule l’opérateur linéaire qui décrit les contraintes du problème de minimisation de norme nucléaire. On montre l’utilité du problème de décomposition à dissocier un modèle statistique ou biologique. / We study the decomposition of a multivariate Hankel matrix as a sum of Hankel matrices of small rank in correlation with the decomposition of its symbol σ as a sum of polynomialexponential series. We present a new algorithm to compute the low rank decomposition of the Hankel operator and the decomposition of its symbol exploiting the properties of the associated Artinian Gorenstein quotient algebra . A basis of is computed from the Singular Value Decomposition of a sub-matrix of the Hankel matrix . The frequencies and the weights are deduced from the generalized eigenvectors of pencils of shifted sub-matrices of Explicit formula for the weights in terms of the eigenvectors avoid us to solve a Vandermonde system. This new method is a multivariate generalization of the so-called Pencil method for solving Pronytype decomposition problems. We analyse its numerical behaviour in the presence of noisy input moments, and describe a rescaling technique which improves the numerical quality of the reconstruction for frequencies of high amplitudes. We also present a new Newton iteration, which converges locally to the closest multivariate Hankel matrix of low rank and show its impact for correcting errors on input moments. We study the decomposition of a multi-symmetric tensor T as a sum of powers of product of linear forms in correlation with the decomposition of its dual as a weighted sum of evaluations. We use the properties of the associated Artinian Gorenstein Algebra to compute the decomposition of its dual which is defined via a formal power series τ. We use the low rank decomposition of the Hankel operator associated to the symbol τ into a sum of indecomposable operators of low rank. A basis of is chosen such that the multiplication by some variables is possible. We compute the sub-coordinates of the evaluation points and their weights using the eigen-structure of multiplication matrices. The new algorithm that we propose works for small rank. We give a theoretical generalized approach of the method in n dimensional space. We show a numerical example of the decomposition of a multi-linear tensor of rank 3 in 3 dimensional space. We show a numerical example of the decomposition of a multi-symmetric tensor of rank 3 in 3 dimensional space. We study the completion problem of the low rank Hankel matrix as a minimization problem. We use the relaxation of it as a minimization problem of the nuclear norm of Hankel matrix. We adapt the SVT algorithm to the case of Hankel matrix and we compute the linear operator which describes the constraints of the problem and its adjoint. We try to show the utility of the decomposition algorithm in some applications such that the LDA model and the ODF model.
|
4 |
Tensor RankErdtman, Elias, Jönsson, Carl January 2012 (has links)
This master's thesis addresses numerical methods of computing the typical ranks of tensors over the real numbers and explores some properties of tensors over finite fields. We present three numerical methods to compute typical tensor rank. Two of these have already been published and can be used to calculate the lowest typical ranks of tensors and an approximate percentage of how many tensors have the lowest typical ranks (for some tensor formats), respectively. The third method was developed by the authors with the intent to be able to discern if there is more than one typical rank. Some results from the method are presented but are inconclusive. In the area of tensors over nite filds some new results are shown, namely that there are eight GLq(2) GLq(2) GLq(2)-orbits of 2 2 2 tensors over any finite field and that some tensors over Fq have lower rank when considered as tensors over Fq2 . Furthermore, it is shown that some symmetric tensors over F2 do not have a symmetric rank and that there are tensors over some other finite fields which have a larger symmetric rank than rank.
|
5 |
Algorithms in data mining using matrix and tensor methodsSavas, Berkant January 2008 (has links)
In many fields of science, engineering, and economics large amounts of data are stored and there is a need to analyze these data in order to extract information for various purposes. Data mining is a general concept involving different tools for performing this kind of analysis. The development of mathematical models and efficient algorithms is of key importance. In this thesis we discuss algorithms for the reduced rank regression problem and algorithms for the computation of the best multilinear rank approximation of tensors. The first two papers deal with the reduced rank regression problem, which is encountered in the field of state-space subspace system identification. More specifically the problem is \[ \min_{\rank(X) = k} \det (B - X A)(B - X A)\tp, \] where $A$ and $B$ are given matrices and we want to find $X$ under a certain rank condition that minimizes the determinant. This problem is not properly stated since it involves implicit assumptions on $A$ and $B$ so that $(B - X A)(B - X A)\tp$ is never singular. This deficiency of the determinant criterion is fixed by generalizing the minimization criterion to rank reduction and volume minimization of the objective matrix. The volume of a matrix is defined as the product of its nonzero singular values. We give an algorithm that solves the generalized problem and identify properties of the input and output signals causing a singular objective matrix. Classification problems occur in many applications. The task is to determine the label or class of an unknown object. The third paper concerns with classification of handwritten digits in the context of tensors or multidimensional data arrays. Tensor and multilinear algebra is an area that attracts more and more attention because of the multidimensional structure of the collected data in various applications. Two classification algorithms are given based on the higher order singular value decomposition (HOSVD). The main algorithm makes a data reduction using HOSVD of 98--99 \% prior the construction of the class models. The models are computed as a set of orthonormal bases spanning the dominant subspaces for the different classes. An unknown digit is expressed as a linear combination of the basis vectors. The resulting algorithm achieves 5\% in classification error with fairly low amount of computations. The remaining two papers discuss computational methods for the best multilinear rank approximation problem \[ \min_{\cB} \| \cA - \cB\| \] where $\cA$ is a given tensor and we seek the best low multilinear rank approximation tensor $\cB$. This is a generalization of the best low rank matrix approximation problem. It is well known that for matrices the solution is given by truncating the singular values in the singular value decomposition (SVD) of the matrix. But for tensors in general the truncated HOSVD does not give an optimal approximation. For example, a third order tensor $\cB \in \RR^{I \x J \x K}$ with rank$(\cB) = (r_1,r_2,r_3)$ can be written as the product \[ \cB = \tml{X,Y,Z}{\cC}, \qquad b_{ijk}=\sum_{\lambda,\mu,\nu} x_{i\lambda} y_{j\mu} z_{k\nu} c_{\lambda\mu\nu}, \] where $\cC \in \RR^{r_1 \x r_2 \x r_3}$ and $X \in \RR^{I \times r_1}$, $Y \in \RR^{J \times r_2}$, and $Z \in \RR^{K \times r_3}$ are matrices of full column rank. Since it is no restriction to assume that $X$, $Y$, and $Z$ have orthonormal columns and due to these constraints, the approximation problem can be considered as a nonlinear optimization problem defined on a product of Grassmann manifolds. We introduce novel techniques for multilinear algebraic manipulations enabling means for theoretical analysis and algorithmic implementation. These techniques are used to solve the approximation problem using Newton and Quasi-Newton methods specifically adapted to operate on products of Grassmann manifolds. The presented algorithms are suited for small, large and sparse problems and, when applied on difficult problems, they clearly outperform alternating least squares methods, which are standard in the field.
|
Page generated in 0.0518 seconds