• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mise en évidence des acteurs impliqués dans le processus de lésion/réparation à la synapse vestibulaire après traumatisme excitotoxique / Study of the cellular effectors involved in the damage / repair process at the vestibular synapse after excitotoxic injury

Brun, Emilie 18 December 2013 (has links)
L'excitotoxicité est un mécanisme pathologique qui résulte généralement du relargage massif de glutamate par les neurones en souffrance et qui conduit à la destruction des réseaux neuronaux ainsi qu'à des pertes cellulaires qui peuvent sévèrement impacter les fonctions cognitives et motrices. Au niveau du système nerveux central la séquence d'évènements qui supportent ce processus a bien été décrite et sert aujourd'hui de base au développement d'approches thérapeutiques ciblés pour limiter les conséquences du phénomène. Au niveau de l'oreille interne, les processus excitotoxiques pourraient également être impliqués dans différents types d'atteintes des fonctions auditives et vestibulaires tels que les traumas acoustiques, les surdités brusques, la neurite vestibulaire ou encore les vertiges d'origines ischémiques. Bien que les mécanismes moléculaires qui supportent ce type d'atteinte aient été bien explorés au niveau cochléaire, ils restent peu documentés au niveau du vestibule. De récentes études réalisées par notre équipe ont mis en évidence la participation des récepteurs du glutamate à la neurotransmission vestibulaire en conditions normales et ont également démontré les conséquences histologiques et fonctionnelles d'une atteinte excitotoxique du vestibule. Elles ont par ailleurs mis en évidence le fort potentiel de réparation spontané des synapses vestibulaires après déafférentation. Dans le présent travail de thèse, nous avons voulu identifier les effecteurs cellulaires qui contrôlent les phénomènes de déafférentation et de réafférentation. Dans ce but, nous avons mis au point un modèle d'étude original, qui permet un suivi histologique et fonctionnel de la séquence des évènements biologiques mis en jeu dans ces processus. En combinant des approches en immunohistochimie, microscopie électronique, électrophysiologie moléculaire et pharmacologie nous démontrons que les récepteurs glutamatergiques de types AMPA et NMDA sont tous deux impliqués dans les processus de déafférentation. Les récepteurs NMDA sont également essentiels au processus de réparation synaptique. Les résultats de ce travail apportent une nouvelle lumière sur le rôle des récepteurs du glutamate dans le processus de lésion/réparation des synapses vestibulaires. Cette nouvelle donne pourrait impacter directement sur les stratégies pharmacologiques de protection en cours de développement dans le domaine de la pathologie vestibulaire, mais également par extension à celui de la pathologie auditive. En outre le modèle de culture organotypique de tranche d'organe vestibulaire pourrait trouver application pour le screening de nouveaux composés à propriétés protectrices ou régénératrices. / Excitotoxicity is a pathological mechanism that usually results from the massive release of glutamate by suffering neurons and that leads to destruction of neural networks as well as cell losses that may severely impact cognitive and motor functions. In the central nervous system the sequence of events that supports this process has been extensively studied and is now the basis for the development of targeted therapeutic approaches to limit the consequences of the phenomenon. In the inner ear, excitotoxic damages may also support in different types of auditory and vestibular disorders such as acoustic traumas, sudden hearing loss, vestibular neuritis or dizziness of ischemic origin. Though the molecular mechanisms that support this type of injury have been well explored at cochlear level, they remain poorly documented in the vestibule. Recent studies by our team have confirmed the involvement of glutamate receptors in the vestibular calyx neurotransmission in normal conditions and also showed histological and functional consequences of excitotoxic damage in the vestibule. They also revealed the potential for spontaneous repair of the vestibular synapses after deafferentation. In present thesis, we aimed at identifying the cellular effectors that control the phenomena of deafferentation and reafferentation. For this purpose, we developed an original study model, which allows tracking histological and functional assessment of biological events involved in these processes. By combining approaches in immunohistochemistry, electron microscopy, molecular electrophysiology and pharmacology we demonstrate that both AMPA and NMDA type glutamate receptors are mainly involved in the process of deafferentation. NMDA receptors are also essential for synaptic repair process. The results of this work provide a new light on the role of glutamate receptors in the process of injury / repair of vestibular synapses. The novel observations could directly impact on the ongoing pharmacological protection strategies in the field of the vestibular pathology, and by extension to that of the hearing pathology. In addition, the organotypic culture model of vestibular organ slices may find application for screening new compounds with protective or regenerative properties.
2

Homéostasie glutamatergique des synapses en calice de l’appareil vestibulaire : implication de plusieurs transporteurs du glutamate de la famille des EAAT / Calyx synapses glutamatergic homeostasis in the vestibular system : implication of several EAAT family glutamate transporters

Dalet, Antoine 09 December 2011 (has links)
L'homéostasie glutamatergique dans les fentes synaptiques régule la neurotransmission et préserve de l'excitotoxicité. Cela est particulièrement important dans l'oreille interne où il y a une libération soutenue de neurotransmetteur. Pour la plupart des cellules ciliées cochléaires et vestibulaires, la clairance du glutamate est assurée par les transporteurs du glutamate EAAT1 (GLAST) exprimés par les cellules de soutien. Un tel mécanisme n'est pas possible pour les cellules ciliées vestibulaires de type I car leur terminaison synaptique en calice empêche tout accès à la fente synaptique. Nous avons donc postulé qu'un ou plusieurs transporteurs du glutamate devaient être présents au niveau des cellules ciliées de type I ou du calice ou des deux.Grâce à des enregistrements électrophysiologiques, nous avons démontré qu'un courant anionique induit par le glutamate et bloqué par le DL-TBOA est présent dans les cellules ciliées de type I. Les techniques d'hybridation in situ et d'immunohistochimie ont révélé la présence d'EAAT4 et EAAT5. Ces deux transporteurs du glutamate, qui pourraient êtres à l'origine des courants enregistrés, sont exprimés par les cellules ciliées de type I et de type II. De plus, des expériences de RT-PCR et de microscopie électronique ont confirmé ces résultats et suggéré que ces transporteurs pourraient aussi être exprimés postsynaptiquement par le calice. Ces travaux de thèse montrent qu'EAAT4 et EAAT5, considérés respectivement comme spécifiques des tissus cérébelleux et rétiniens, ont une distribution plus large. Ces résultats posent la question des rôles potentiels de ces transporteurs dans l'homéostasie glutamatergique vestibulaire. / Glutamate homeostasis in synaptic clefts shape neurotransmission and prevent excitotoxicity. This may be particularly important in the inner ear where there is a continually high rate of neurotransmitter release. In the case of most cochlear and vestibular hair cells, clearance involves the diffusion of glutamate to supporting cells, where it is taken up by EAAT1 (GLAST), a glial glutamate transporter. A similar mechanism is unlikely to work in vestibular type I hair cells because the presence of calyx endings separates supporting cells from the synaptic zone. Based on this arrangement, we postulated that a glutamate transporter must be present in the type I hair cell, the calyx ending, or both. Using whole-cell patch-clamp recordings, we demonstrated that a glutamate-activated anion current blocked by DL-TBOA is expressed in type I hair cells. In situ hybridization and immunohistochemistry revealed that EAAT4 and EAAT5, two glutamate transporters that could support the anion current, are expressed in both type I and type II hair cells. Furthermore, RT-PCR and immunogold investigations confirmed those results and added that although preferentially expressed presynaptically, the transporters may also be present in the postsynaptic calyx membrane. Previously thought to be exclusively expressed in the cerebellum and retina respectively, this thesis work shows that EAAT4 and EAAT5 have a wider distribution. The potential role of these transporters in the glutamatergic homeostasis of the calyx synapse is then discussed.

Page generated in 0.0767 seconds