• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 46
  • 20
  • 18
  • 11
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 264
  • 264
  • 76
  • 74
  • 53
  • 53
  • 40
  • 39
  • 38
  • 34
  • 33
  • 33
  • 32
  • 29
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

PAKs 1 & 3 Control Postnatal Brain Development and Cognitive Behaviour through Regulation of Axonal and Dendritic Arborizations

Huang, Wayne 03 December 2012 (has links)
The molecular mechanisms that coordinate postnatal brain enlargement, synaptic properties and cognition remain an enigma. This study demonstrates that neuronal complexity controlled by p21-activated kinases (PAKs) is a key determinant for postnatal brain enlargement and synaptic properties. Double knockout (DK) mice lacking both PAK1 and PAK3 were severely impaired in postnatal brain growth, resulting in a dramatic reduction in brain volume at maturity. Remarkably, the reduced brain was accompanied by minimal changes in total cell count, due to a significant increase in cell density. However, the DK neurons have smaller soma, markedly simplified dendritic arbors/axons and reduced synapse density. Surprisingly, the DK mice were elevated in basal synaptic responses due to enhanced individual synaptic potency, but severely impaired in bi-directional synaptic plasticity. The PAK1/3 action is likely mediated by cofilin-dependent actin regulation because the activity of cofilin and the properties of actin filaments were specifically altered in the DK mice.
32

Fragile X Mental Retardation Protein is Required for Chemically-induced Long-term Potentiation of the Hippocampus in Adult Mice

Shang, Yuze 15 February 2010 (has links)
Fragile X syndrome (FXS) is caused by the lack of fragile X mental retardation protein (FMRP). The animal model of FXS, Fmr1 knockout (KO) mice, shows impairment in hippocampus-dependent learning and memory. However, results for long-term potentiation (LTP), remain inconclusive in the hippocampus of Fmr1 KO mice. Here, we demonstrate that FMRP is required for glycine-induced LTP (Gly-LTP) in the CA1 of hippocampus. The Gly-LTP requires activation of postsynaptic NMDA receptors and metabotropic glutamateric receptors, as well as the subsequent activation of extracellular signal-regulated kinase (ERK) 1/2. However, paired-pulse facilitation was not affected by glycine treatment. Our study provide evidences that FMRP participates in Gly-LTP by regulating the phosphorylation of ERK1/2, and that improper regulation of these signaling pathways may contribute to the learning and memory deficits observed in FXS.
33

Myosin Va mutation in rats is an animal model for the human hereditary neurological disease, Griscelli syndrome type 1

Takagishi, Yoshiko, 高岸, 芳子, Murata, Yoshiharu 11 1900 (has links)
No description available.
34

Spatiotemporal Kinetics of AMPAR Trafficking in Single Spines

Patterson, Michael Andrew January 2010 (has links)
<p>Learning and memory is one of the critical components of the human experience. In one model of memory, hippocampal LTP, it is believed that the trafficking of AMPA receptors to the synapse is a fundamental process, yet the spatiotemporal kinetics of the process remain under dispute. In this work, we imaged the trafficking of AMPA receptors by combining two-photon glutamate uncaging on single spines with a fluorescent reporter for surface AMPA receptors. We found that AMPA receptors are trafficked to the spine at the same time as the spine size is increasing. Using a bleaching protocol, we found that the receptors that reach the spine come from a combination of the surface and endosomal pools. Imaging exocytosis in real time, we found that the exocytosis rate increases briefly (~1 min.), both in the spine and neighbouring dendrite. Finally, we performed pharmacological and genetic manipulations of signaling pathways, and found that the Ras-ERK signaling pathway is necessary for AMPAR exocytosis.</p> <p>In a set of related experiments, we also investigated the capacity of single spines to undergo potentiation multiple times. By stimulating spines twice using glutamate uncaging, we found that there is a refractory period for synaptic plasticity in spines during which they cannot further be potentiated. We furthermore found that inducing plasticity in a given spine inhibits plasticity at nearby spines.</p> / Dissertation
Read more
35

Ethanol experience induces metaplasticity of NMDA receptor-mediated transmission in ventral tegmental area dopamine neurons

Bernier, Brian Ernest 31 October 2011 (has links)
Addiction is thought to arise, in part, from a maladaptive learning process in which enduring memories of drug-related experiences are formed, resulting in persistent and uncontrollable drug-seeking behavior. However, it is well known that both acute and chronic alcohol (ethanol) exposures impair various types of learning and memory in both humans and animals. Consistent with these observations, both acute and chronic exposures to ethanol suppress synaptic plasticity, the major neural substrate for learning and memory, in multiple brain areas. Therefore, it remains unclear how powerful memories associated with alcohol experience are formed during the development of alcoholism. The mesolimbic dopaminergic system is critically involved in the learning of information related to rewards, including drugs of abuse. Both natural and drug rewards, such as ethanol, cause release of dopamine in the nucleus accumbens and other limbic structures, which is thought to drive learning by enhancing synaptic plasticity. Accumulating evidence indicates that plasticity of glutamatergic transmission onto dopamine neurons may play an important role in the development of addiction. Plasticity of NMDA receptor (NMDAR)-mediated transmission may be of particular interest, as NMDAR activation is necessary for dopamine neuron burst firing and phasic dopamine release in projection areas that occurs in response to rewards or reward-predicting stimuli. NMDAR plasticity may, therefore, drive the learning of stimuli associated with rewards, including drugs of abuse. This dissertation finds that repeated in vivo ethanol exposure induces a metaplasticity of NMDAR-mediated transmission in mesolimbic dopamine neurons, expressed as an increased susceptibility to the induction of NMDAR LTP. Enhancement of NMDAR plasticity results from an increase in the potency of inositol 1,4,5- trisphosphate (IP3) in producing the facilitation of action potential-evoked Ca2+ signals critical for LTP induction. Interestingly, amphetamine exposure produces a similar enhancement of IP3R function, suggesting this neuroadaptation may be a common response to exposure to multiple drugs of abuse. Additionally, ethanol-treated mice display enhanced learning of cues associated with cocaine exposure. These findings suggest that metaplasticity of NMDAR LTP may contribute to the formation of powerful memories related to drug experiences and provide an important insight into the learning component of addiction. / text
Read more
36

Molecular and Genetic Analysis of Synaptic Signaling in Drosophila

Jackson, Taryn January 2005 (has links)
Molecular and genetic analysis of synaptic signaling in Drosophila has yielded many insights into nervous system development, properties of synaptic transmission, and how long-lasting changes in neurons occur. Synaptic signaling components required for synaptic transmission and pathways leading to nervous system plasticity are typically conserved from insects to humans. The role of proteins and genes in synaptic function in flies can be analyzed from the level of a single synapse to complex behaviors in the whole organism. Because of a fully sequenced genome and the ease of mutagenesis in flies, genetic screens have been useful in identifying novel regulators of synaptic transmission and long-term memory.In flies, conditional mutations affecting synaptic transmission at nerve terminals often lead to temperature sensitive paralysis. In a screen for mutations that interact with Drosophila shibirets mutants, the stoned gene was identified as a regulator of synaptic vesicle cycling. Stoned encodes two neuronally expressed proteins, stonedA and B, which are required for synaptic vesicle recycling and normal synaptic transmission. However, the exact functions of the two stoned proteins are not fully understood. We investigate distinct roles of the stoned proteins here and show that stoned has a novel role in synaptic growth.Memory in flies can be divided into genetically distinct phases based on the requirement for protein synthesis and activation of the transcription factor CREB. Novel regulators of long-term olfactory avoidance memory were isolated in a mutant screen in flies. Mutants in the Drosophila gene lk6, homologous to the translational regulator MNK, have defects in long-term olfactory avoidance memory. We find that lk6 is highly expressed in the fly nervous system, and is activated by and functions downstream of Ras/ERK signaling in fly neurons. Insights provided here from Drosophila add to the evidence that MNK may be the link between ERK signaling and the regulation of translation in long-term plasticity.Ultimately, understanding synaptic function has therapeutic potential to aid in alleviation of nervous system dysfunction. Insight into the molecular pathways underlying plasticity and long-term memory gained from studies in flies, mollusks, and rodents has been pivotal in the development of potential drugs to aid in memory deficits in humans.
Read more
37

LIMK1 Regulation of Long-term Memory and Synaptic Plasticity

Todorovski, Zarko 16 December 2013 (has links)
The LIM-Kinase family of proteins (LIMK) plays an important role in actin dynamics through its regulation of ADF/cofilin. A subtype of LIMK, LIMK1, is mostly expressed in neuronal tissues with high levels in the mature synapse. Previous studies from the Zhen Ping Jia laboratory have shown that LIMK1-/- mice exhibit abnormal spine morphology as well as altered hippocampal synaptic plasticity. LIMK1 has been shown to interact with CREB during neuronal development (Yang et al., 2004). We propose that LIMK1 is able to phosphorylate CREB in response to a synaptic activity. We hypothesize that if LIMK1 activates CREB in mature neurons, then LIMK1 knockout mice will have decreased L-LTP and deficits in long-term memory. My results show that LIMK1 and CREB exist in a complex and are bound to each other in mature neurons. LIMK1-/- mice exhibit deficits in the late phase of long-term potentiation and specific deficits in long-term memory while short-term memory remains unaltered. Pharmacological activation of CREB attenuates the observed deficits in synaptic plasticity and long-term memory. These results show a potentially novel mechanism of CREB activation in response to synaptic activity. Moreover, using peptides to manipulate actin dynamics in LIMK1 lacking animals only has effects on early LTP and is not able to rescue the late phase LTP deficits found in LIMK1 -/- mice. These results indicate a specific role of LIMK1 long-term memory and synaptic plasticity through regulation of CREB and not through regulation of the actin cytoskeleton.
Read more
38

LIMK1 Regulation of Long-term Memory and Synaptic Plasticity

Todorovski, Zarko 16 December 2013 (has links)
The LIM-Kinase family of proteins (LIMK) plays an important role in actin dynamics through its regulation of ADF/cofilin. A subtype of LIMK, LIMK1, is mostly expressed in neuronal tissues with high levels in the mature synapse. Previous studies from the Zhen Ping Jia laboratory have shown that LIMK1-/- mice exhibit abnormal spine morphology as well as altered hippocampal synaptic plasticity. LIMK1 has been shown to interact with CREB during neuronal development (Yang et al., 2004). We propose that LIMK1 is able to phosphorylate CREB in response to a synaptic activity. We hypothesize that if LIMK1 activates CREB in mature neurons, then LIMK1 knockout mice will have decreased L-LTP and deficits in long-term memory. My results show that LIMK1 and CREB exist in a complex and are bound to each other in mature neurons. LIMK1-/- mice exhibit deficits in the late phase of long-term potentiation and specific deficits in long-term memory while short-term memory remains unaltered. Pharmacological activation of CREB attenuates the observed deficits in synaptic plasticity and long-term memory. These results show a potentially novel mechanism of CREB activation in response to synaptic activity. Moreover, using peptides to manipulate actin dynamics in LIMK1 lacking animals only has effects on early LTP and is not able to rescue the late phase LTP deficits found in LIMK1 -/- mice. These results indicate a specific role of LIMK1 long-term memory and synaptic plasticity through regulation of CREB and not through regulation of the actin cytoskeleton.
Read more
39

Resilient GluN2B-containing NMDARs contribute to dysfunctional synaptic plasticity associated with chronic cocaine intake

DEBACKER, JULIAN 17 July 2012 (has links)
Learning and memory mechanisms that are normally related to natural rewards, such as long-term potentiation (LTP) and depression (LTD), may be usurped by the voluntary intake of drugs of abuse. The maladaptive behaviour that characterizes addiction is thought to arise from persistent changes in excitatory synaptic function in brain reward circuits. The oval region of the dorsal bed nucleus of the stria terminalis (ovBST) is one such region susceptible to drug-induced synaptic remodeling and is implicated in drug-driven behaviors, reinforcement and stress-induced relapse to drug-seeking. Using whole-cell voltage clamp recordings of ovBST neurons in brain slices prepared from adult Long-Evans rats, we demonstrated an unrestrained increase in AMPAR-mediated excitatory transmission with maintenance of cocaine self-administration. This is unlike self-administration of a natural reward, in which we observed an enhancement and then decline of AMPAR-mediated transmission with continued intake. Additionally, we demonstrate impairment in NMDAR-mediated LTD in ovBST neurons with cocaine self-administration. This impairment may be due to resilient GluN2B-containing NMDARs, as application of a GluN2B-antagonist rescued impaired LTD. Based on models of NMDAR-mediated bidirectional plasticity we suggest that a drug-induced de-regulation between GluN2A and GluN2B subunits impairs LTD, which may underlie the enhancement AMPAR-mediated transmission. / Thesis (Master, Neuroscience Studies) -- Queen's University, 2012-05-31 09:46:39.312
Read more
40

Modulation of dendritic excitability

Hamilton, Trevor Unknown Date
No description available.

Page generated in 0.063 seconds