• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 10
  • 10
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of synaptic depression on network activity and implications for neural coding

York, Lawrence Christopher January 2011 (has links)
Short-term synaptic depression is the phenomena where repeated stimulation leads to a decreased transmission efficacy. In this thesis, the impact of synaptic depression on the responses and dynamics of network models of visual processing is investigated, and the coding implications are examined. I find that synaptic depression can fundamentally change the operation of previously well - understood networks, and explain temporal nonlinearities present in neural responses to multiple stimuli. Furthermore, I show, more generally, how nonlinear interactions can be beneficial with respect to neural coding. I begin chapter 1 with a short introduction. In chapter 2 of this thesis, the behaviour of a ring attractor network is examined when its recurrent connections are subject to short term synaptic depression. I find that, in the presence of a uniform background current, the activity of the network settles to one of three states: a stationary attractor state, a uniform state or a rotating attractor state. I show that the rotation speed can be adjusted over a large range by changing the background current, opening the possibility to use the network as a variable frequency oscillator or pattern generator, and use mathematical analysis to determine an approximate maximum rotation speed. Using simulations, I then extend the network into two - dimensions, and find a rich range of possible behaviours. Processing in the visual cortex can be non - linear: the response to two objects or other visual stimuli presented simultaneously is often less than the sum of the responses to the individual objects. A maximum function has in some cases been proposed to describe these competitive interactions. More recent data has emphasised that such interactions have temporal aspects as well, namely that the response to an initially presented stimulus can suppress the response to a stimulus presented subsequently, especially if the first stimulus is presented at high contrast. Chapter 3 of this thesis will present a simple neuronal network featuring synaptic depression which can account for much of the temporal aspects of this behaviour, whilst remaining consistent with older data and models. Furthermore, it will show how this model leads to several strong predictions regarding the processing of low contrast stimuli sequences, as well suggesting a link between response latency and suppression strength. The response of the model to a structured sequence of input stimuli also appears to anticipate future stimuli, and we predict that the magnitude of this stimulus anticipation will decrease as contrast is decreased. Following on from investigating the temporal aspects of responses to stimuli pairs, in chapter 4 this thesis examines an abstract model of how coding is impacted by non - linear interactions, for both structured and unstructured stimuli spaces. I find that non- linear methods of responding to pairs of stimuli presented simultaneously can have a beneficial effect on coding capacity, with linearly combined responses generally leading to the highest decoding errors rates. This thesis goes on to examine the interplay between this models noise assumptions and the decoding performance, and finds that many of the assumptions made can be weakened without changing, qualitatively, these findings. In chapter 5, this thesis examines layered networks of noisy spiking neurons with recurrent connectivity and featuring depressing synapses. The contrast dependent latency and spike count statistics of the model are analysed and are found to be strongly dependent on the parameters of the noise. The tuning of parameters for models containing noisy IF neurons is discussed, and an information theoretic approach to tuning is outlined which successfully reproduces earlier work in which noise was tuned to linearise the response of a spiking network. The approach is applied to maximise the ability of the network to filter rapid noise transients at low contrast. I finish the thesis with a short concluding chapter.
2

Encoding strategies and mechanisms underpinning adaptation to stimulus statistics in the rat barrel cortex

Davies, Lucy Anne January 2011 (has links)
It is well established that, following adaptation, cells adjust their sensitivity to reflect the global stimulus conditions. Two recent studies in guinea pig inferior colliculus (IC, Dean, Harper & McAlpine 2005) and rat barrel cortex (Garcia-Lazaro, Ho, Nair & Schnupp 2007) found that neural stimulus-response functions were displaced laterally in a manner that was dependent on the mean adapting stimulus. However, the direction of gain change, following adaptation to variance, was in contradiction to Information Theory, which predicts a decrease in gain with increased stimulus variance. On further analysis of the experimental data, presented within this thesis, it was revealed that the adaptive gain changes to global stimulus variance were, in fact, in the direction predicted by Information Theory. However, following adaptation to global mean amplitude, neural threshold was displaced to centre the SRF on inputs that were located on the edge of the stimulus distribution. It was found that adaptation scaled neural output such that the relationship between firing rate and local, as opposed to global, differences in stimulus amplitude was maintained; with the majority of cells responding to large differences in stimulus amplitude, on the 40ms scale. A small majority of cells responded to step-size differences, in amplitude, of either direction and were classed as novelty preferring. Adaptation to global mean was replicated in model neuron with spike-rate adaptation and tonic inhibition, which increased with stimulus mean. Adaptation to stimulus variance was replicated in three models 1: By increasing, in proportion to stimulus variance, background, excitatory and inhibitory firing rates in a balanced manner (Chance, Abbott & Reyes 2002), 2: A model of asymmetric synaptic depression (Chelaru & Dragoi 2008) and 3: a model combining non-linear input with synaptic depression. The results presented, within this thesis, demonstrate that neurons change their coding strategies depending upon the global levels of mean and variance within the sensory input. Under low noise conditions, neurons act as deviation detectors, i.e. are primed to respond to large changes in the stimulus on the tens of millisecond; however, under conditions of increased noise switch their encoding strategy in order to compute the full range of the stimulus distribution through adjusting neural gain.
3

Regulation of AKAP79/150 targeting to dendritic spines /

Horne, Eric Andrew. January 2007 (has links)
Thesis (Ph.D. in Pharmacology) -- University of Colorado Denver, 2007. / Typescript. Includes bibliographical references (leaves 132-151). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
4

Protein phosphorylation : roles in subcellular localization and synaptic plasticity /

Davies, Kurtis Daniel January 2008 (has links)
Thesis (Ph.D. in Pharmacology) -- University of Colorado Denver, 2008. / Typescript. Includes bibliographical references (leaves 100-118).
5

Visualisation et perturbation de la dynamique spatio-temporelle de l’endocytose / Visualisation and Perturbation of the Spatio-Temporal Dynamics of Endocytosis

Rosendale, Morgane 18 June 2015 (has links)
L’endocytose dépendante de la clathrine (EDC) est un processus fondamental des cellules eucaryotes. Elle se caractérise par la formation d’invaginations à la membrane plasmique aboutissant à la création de petites vésicules par l’action de la dynamine. Dans le cerveau, elle est impliquée dans la dépression synaptique à long terme, un corrélat cellulaire de la mémoire. La morphologie complexe des neurones et le contrôle précis du code neuronal suggèrent qu’elle puisse être régulée spatialement et temporellement dans ces cellules. Le but de mon travail a été de développer de nouveaux outils pour visualiser et perturber l’EDC afin d’étudier ce type de régulation. Le premier de ces outils est pHuji, un senseur de pH rouge génétiquement encodable. Je l’ai utilisé avec un senseur de pH vert existant pour montrer que dans les cellules NIH- 3T3, le récepteur β2-adrénergique est internalisé dans une sous-population de vésicules contenant le récepteur à la transferrine constitutivement endocyté. Le deuxième est une nouvelle méthode d’imagerie permettant de visualiser l’activité d’endocytose de structures recouvertes de clathrine optiquement stables dans des neurones d’hippocampe. J’ai ainsi pu suivre pour la première fois la cinétique d’internalisation de récepteurs au glutamate de type AMPA dans des conditions de plasticité. Enfin, j'ai élaboré un test combinant imagerie et patch-clamp afin de développer un bloqueur peptidique spécifique de l'EDC. En utilisant des peptides dimériques, j’ai montré que la dynamine se lie à ses partenaires via des interactions multimériques. En conclusion, ce travail propose une boite à outils permettant d’élucider les mécanismes de l’EDC avec une grande résolution spatiale et temporelle. / Clathrin mediated endocytosis (CME) is a fundamental process of all eukaryotic cells. At the level of the plasma membrane, it is characterized by the formation of deep invaginations resulting in the creation of small vesicles after membrane scission by dynamin. In the central nervous system, it is involved in the expression of synaptic long term depression, a proposed cellular correlate of learning and memory. The complex morphology of neurons and the precise timing of neuronal firing suggest that endocytosis may be spatially and temporally regulated in those cells. The aim of the work presented here was to develop new tools to visualize and perturb CME in order to study such regulation. The first tool to be characterized was pHuji, a genetically encoded red pH-sensor. I used it in combination with an existing green pHsensor to demonstrate that in NIH-3T3 cells, the β2-adrenergic receptor was internalized in a subset of vesicles containing the constitutively endocytosed transferrin receptor. The second tool is a new imaging method that allowed me to monitor the endocytic activity of optically stable clathrin coated structures in hippocampal neurons. I was thus able to visualize for the first time the kinetics of internalization of AMPA-type glutamate receptors under plasticity inducing conditions. Finally, I set up an assay combining imaging and cell dialysis in order to develop a specific peptide-based inhibitor of CME. Using dimeric peptides, I found that the interplay between dynamin and its binding partners relies on multimeric interactions. Altogether, this work provides a toolbox to decipher the mechanisms of vesicle formation with high spatial and temporal resolution.
6

Modelling neuronal mechanisms of the processing of tones and phonemes in the higher auditory system

Larsson, Johan P. 15 November 2012 (has links)
S'ha investigat molt tant els mecanismes neuronals bàsics de l'audició com l'organització psicològica de la percepció de la parla. Tanmateix, en ambdós temes n'hi ha una relativa escassetat en quant a modelització. Aquí describim dos treballs de modelització. Un d'ells proposa un nou mecanisme de millora de selectivitat de freqüències que explica resultats de experiments neurofisiològics investigant manifestacions de forward masking y sobretot auditory streaming en l'escorça auditiva principal (A1). El mecanisme funciona en una xarxa feed-forward amb depressió sináptica entre el tàlem y l'escorça, però mostrem que és robust a l'introducció d'una organització realista del circuit de A1, que per la seva banda explica cantitat de dades neurofisiològics. L'altre treball descriu un mecanisme candidat d'explicar la trobada en estudis psicofísics de diferències en la percepció de paraules entre bilinguës primerencs y simultànis. Simulant tasques de decisió lèxica y discriminació de fonemes, fortifiquem l'hipòtesi de que persones sovint exposades a variacions dialectals de paraules poden guardar aquestes en el seu lèxic, sense alterar representacions fonemàtiques . / Though much experimental research exists on both basic neural mechanisms of hearing and the psychological organization of language perception, there is a relative paucity of modelling work on these subjects. Here we describe two modelling efforts. One proposes a novel mechanism of frequency selectivity improvement that accounts for results of neurophysiological experiments investigating manifestations of forward masking and above all auditory streaming in the primary auditory cortex (A1). The mechanism works in a feed-forward network with depressing thalamocortical synapses, but is further showed to be robust to a realistic organization of the neural circuitry in A1, which accounts for a wealth of neurophysiological data. The other effort describes a candidate mechanism for explaining differences in word/non-word perception between early and simultaneous bilinguals found in psychophysical studies. By simulating lexical decision and phoneme discrimination tasks in an attractor neural network model, we strengthen the hypothesis that people often exposed to dialectal word variations can store these in their lexicons, without altering their phoneme representations. / Se ha investigado mucho tanto los mecanismos neuronales básicos de la audición como la organización psicológica de la percepción del habla. Sin embargo, en ambos temas hay una relativa escasez en cuanto a modelización. Aquí describimos dos trabajos de modelización. Uno propone un nuevo mecanismo de mejora de selectividad de frecuencias que explica resultados de experimentos neurofisiológicos investigando manifestaciones de forward masking y sobre todo auditory streaming en la corteza auditiva principal (A1). El mecanismo funciona en una red feed-forward con depresión sináptica entre el tálamo y la corteza, pero mostramos que es robusto a la introducción de una organización realista del circuito de A1, que a su vez explica cantidad de datos neurofisiológicos. El otro trabajo describe un mecanismo candidato de explicar el hallazgo en estudios psicofísicos de diferencias en la percepción de palabras entre bilinguës tempranos y simultáneos. Simulando tareas de decisión léxica y discriminación de fonemas, fortalecemos la hipótesis de que personas expuestas a menudo a variaciones dialectales de palabras pueden guardar éstas en su léxico, sin alterar representaciones fonémicas.
7

Normalization in a cortical hypercolumn : The modulatory effects of a highly structured recurrent spiking neural network / Normalisering i en kortikal hypercolumn : Modulerande effekter i ett hårt strukturerat rekurrent spikande neuronnätverk

Jansson, Ylva January 2014 (has links)
Normalization is important for a large range of phenomena in biological neural systems such as light adaptation in the retina, context dependent decision making and probabilistic inference. In a normalizing circuit the activity of one neuron/-group of neurons is divisively rescaled in relation to the activity of other neurons/­­groups. This creates neural responses invariant to certain stimulus dimensions and dynamically adapts the range over which a neural system can respond discriminatively on stimuli. This thesis examines whether a biologically realistic normalizing circuit can be implemented by a spiking neural network model based on the columnar structure found in cortex. This was done by constructing and evaluating a highly structured spiking neural network model, modelling layer 2/3 of a cortical hypercolumn using a group of neurons as the basic computational unit. The results show that the structure of this hypercolumn module does not per se create a normalizing network. For most model versions the modulatory effect is better described as subtractive inhibition. However three mechanisms that shift the modulatory effect towards normalization were found: An increase in membrane variance for increased modulatory inputs; variability in neuron excitability and connections; and short-term depression on the driving synapses. Moreover it is shown that by combining those mechanisms it is possible to create a spiking neural network that implements approximate normalization over at least ten times increase in input magnitude. These results point towards possible normalizing mechanisms in a cortical hypercolumn; however more studies are needed to assess whether any of those could in fact be a viable explanation for normalization in the biological nervous system. / Normalisering är viktigt för en lång rad fenomen i biologiska nervsystem såsom näthinnans ljusanpassning, kontextberoende beslutsfattande och probabilistisk inferens. I en normaliserande krets skalas aktiviteten hos en nervcell/grupp av nervceller om i relation till aktiviteten hos andra nervceller/grupper. Detta ger neurala svar som är invarianta i förhållande till vissa dimensioner hos stimuli, och anpassar dynamiskt för vilka inputmagnituder ett system kan särskilja mellan stimuli. Den här uppsatsen undersöker huruvida en biologiskt realistisk normal­iserande krets kan implementeras av ett spikande neuronnätverk konstruerat med utgångspunkt från kolumnstrukturen i kortex. Detta gjordes genom att konstruera och utvärdera ett hårt strukturerat rekurrent spikande neuronnätverk, som modellerar lager 2/3 av en kortikal hyperkolumn med en grupp av neuroner som grundläggande beräkningsenhet. Resultaten visar att strukturen i hyperkolumn­modulen inte i sig skapar ett normaliserande nätverk. För de flesta nätverks­versioner implementerar nätverket en modulerande effekt som bättre beskrivs som subtraktiv inhibition. Dock hittades tre mekanismer som skapar ett mer normaliserande nätverk: Ökad membranvarians för större modulerande inputs; variabilitet i excitabilitet och inkommande kopplingar; och korttidsdepression på drivande synapser. Det visas också att genom att kombinera dessa mekanismer är det möjligt att skapa ett spikande neuronnät som approximerar normalisering över ett en åtminstone tio gångers ökning av storleken på input. Detta pekar på möjliga normaliserande mekanismer i en kortikal hyperkolumn, men ytterligare studier är nödvändiga för att avgöra om en eller flera av dessa kan vara en förklaring till hur normalisering är implementerat i biologiska nervsystem.
8

Plasticité présynaptique et gliale à long-terme en réponse à un changement chronique de l’activité synaptique,à la jonction neuromusculaire d’amphibien

Bélair, Eve-Lyne 09 1900 (has links)
La plasticité synaptique est une importante propriété du système nerveux, impliquée dans l’intégration de l’information. Cette plasticité a généralement été décrite par des changements aux niveaux pré et postsynaptiques. Notamment, l’efficacité présynaptique, soit la probabilité de libération de neurotransmetteurs associée au contenu quantique d’une synapse, peut être augmentée ou diminuée selon l’activité antérieure de la synapse. Malgré cette caractérisation, les mécanismes à l’origine de la détermination de l’efficacité présynaptique demeurent obscurs. Également, la plasticité synaptique reste encore mal définie au niveau glial, limitant, de ce fait, notre compréhension de l’intégration de l’information. Pourtant, la dernière décennie a mené à une redéfinition du rôle des cellules gliales. Autrefois reléguées à un rôle de support passif aux neurones, elles sont désormais reconnues comme étant impliquées dans la régulation de la neurotransmission. Notamment, à la jonction neuromusculaire (JNM), les cellules de Schwann périsynaptiques (CSPs) sont reconnues pour moduler l’efficacité présynaptique et les phénomènes de plasticité. Un tel rôle actif dans la modulation de la neurotransmission implique cependant que les CSPs soient en mesure de s’adapter aux besoins changeants des JNMs auxquelles elles sont associées. La plasticité synaptique devrait donc sous-tendre une forme de plasticité gliale. Nous savons, en effet, que la JNM est capable de modifications tant morphologiques que physiologiques en réponse à des altérations de l'activité synaptique. Par exemple, la stimulation chronique des terminaisons nerveuses entraîne une diminution persistante de l’efficacité présynaptique et une augmentation de la résistance à la dépression. À l’opposé, le blocage chronique des récepteurs nicotiniques entraîne une augmentation prolongée de l’efficacité présynaptique. Aussi, compte tenu que les CSPs détectent et répondent à la neurotransmission et qu’elles réagissent à certains stimuli environnementaux par des changements morphologiques, physiologiques et d’expression génique, nous proposons que le changement d'efficacité présynaptique imposé à la synapse, soit par une stimulation nerveuse chronique ou par blocage chronique des récepteurs nicotiniques, résulte en une adaptation des propriétés des CSPs. Cette thèse propose donc d’étudier, en parallèle, la plasticité présynaptique et gliale à long-terme, en réponse à un changement chronique de l’activité synaptique, à la JNM d’amphibien. Nos résultats démontrent les adaptations présynaptiques de l’efficacité présynaptique, des phénomènes de plasticité à court-terme, du contenu mitochondrial et de la signalisation calcique. De même, ils révèlent différentes adaptations gliales, notamment au niveau de la sensibilité des CSPs aux neurotransmetteurs et des propriétés de leur réponse calcique. Les adaptations présynaptiques et gliales sont discutées, en parallèle, en termes de mécanismes et de fonctions possibles dans la régulation de la neurotransmission. Nos travaux confirment donc la coïncidence de la plasticité présynaptique et gliale et, en ce sens, soulèvent l’importance des adaptations gliales pour le maintien de la fonction synaptique. / Synaptic plasticity is a major property of the nervous system, believed to be at the basis of neuronal information processing. This plasticity has been generally described with pre and postsynaptic adaptations. Notably, presynaptic efficacy, referring to the probability of transmitter release associated with the quantal content of a synapse, can be increased or decreased according to the previous history of synapses. Despite this characterization, the mechanisms implicated in the activity-dependent determination of synaptic efficacy remain unknown. Moreover, synaptic plasticity has never been described in terms of glial adaptations, thus limiting our comprehension of neuronal information processing. Nevertheless, the past decade has lead to a redefinition of glial cells functions. Relegated to a passive role of neuronal support in the past, glial cells are now known to be involved in the regulation of neurotransmission. For instance, at the neuromuscular junction (NMJ), perisynaptic Schwann cells (PSCs) are believed to modulate synaptic efficacy and plasticity. Such an active role requires, however, that PSCs adapt to the changing needs of NMJs. Thus, synaptic plasticity must underlie glial plasticity. At the NMJ, changes in synaptic activity result in several morphological and physiological adaptations. Among others, chronic nerve stimulation was shown to decrease synaptic efficacy and short-term depression. Conversely, chronic blockade of postsynaptic nicotinic receptors increases synaptic efficacy. Given that PSCs can detect and respond to neurotransmission with a calcium elevation and that they react to environmental stimuli with morphological, physiological and gene expression adaptations, we propose that prolonged changes in synaptic efficacy, induced by chronic nerve stimulation or chronic blockade of nicotinic receptors, would lead to PSCs adaptations. Thus, in this thesis, we studied, in parallel, long-term presynaptic and glial plasticity, in response to chronic changes in synaptic activity, at the amphibian NMJ. Our results show presynaptic adaptations of synaptic efficacy, short-term plasticity, mitochondrial content and calcium signalling. They also reveal several adaptations of PSCs, related to their sensitivity to neurotransmitters and their calcium responses properties. These presynaptic and glial adaptations are discussed, in parallel, in terms of possible mechanisms and functions in the regulation of neurotransmission. Our work also confirms the coincidence of presynaptic and glial plasticity and, therefore, raises the importance of glial adaptations for the maintenance of synaptic function.
9

Plasticité présynaptique et gliale à long-terme en réponse à un changement chronique de l’activité synaptique,à la jonction neuromusculaire d’amphibien

Bélair, Eve-Lyne 09 1900 (has links)
La plasticité synaptique est une importante propriété du système nerveux, impliquée dans l’intégration de l’information. Cette plasticité a généralement été décrite par des changements aux niveaux pré et postsynaptiques. Notamment, l’efficacité présynaptique, soit la probabilité de libération de neurotransmetteurs associée au contenu quantique d’une synapse, peut être augmentée ou diminuée selon l’activité antérieure de la synapse. Malgré cette caractérisation, les mécanismes à l’origine de la détermination de l’efficacité présynaptique demeurent obscurs. Également, la plasticité synaptique reste encore mal définie au niveau glial, limitant, de ce fait, notre compréhension de l’intégration de l’information. Pourtant, la dernière décennie a mené à une redéfinition du rôle des cellules gliales. Autrefois reléguées à un rôle de support passif aux neurones, elles sont désormais reconnues comme étant impliquées dans la régulation de la neurotransmission. Notamment, à la jonction neuromusculaire (JNM), les cellules de Schwann périsynaptiques (CSPs) sont reconnues pour moduler l’efficacité présynaptique et les phénomènes de plasticité. Un tel rôle actif dans la modulation de la neurotransmission implique cependant que les CSPs soient en mesure de s’adapter aux besoins changeants des JNMs auxquelles elles sont associées. La plasticité synaptique devrait donc sous-tendre une forme de plasticité gliale. Nous savons, en effet, que la JNM est capable de modifications tant morphologiques que physiologiques en réponse à des altérations de l'activité synaptique. Par exemple, la stimulation chronique des terminaisons nerveuses entraîne une diminution persistante de l’efficacité présynaptique et une augmentation de la résistance à la dépression. À l’opposé, le blocage chronique des récepteurs nicotiniques entraîne une augmentation prolongée de l’efficacité présynaptique. Aussi, compte tenu que les CSPs détectent et répondent à la neurotransmission et qu’elles réagissent à certains stimuli environnementaux par des changements morphologiques, physiologiques et d’expression génique, nous proposons que le changement d'efficacité présynaptique imposé à la synapse, soit par une stimulation nerveuse chronique ou par blocage chronique des récepteurs nicotiniques, résulte en une adaptation des propriétés des CSPs. Cette thèse propose donc d’étudier, en parallèle, la plasticité présynaptique et gliale à long-terme, en réponse à un changement chronique de l’activité synaptique, à la JNM d’amphibien. Nos résultats démontrent les adaptations présynaptiques de l’efficacité présynaptique, des phénomènes de plasticité à court-terme, du contenu mitochondrial et de la signalisation calcique. De même, ils révèlent différentes adaptations gliales, notamment au niveau de la sensibilité des CSPs aux neurotransmetteurs et des propriétés de leur réponse calcique. Les adaptations présynaptiques et gliales sont discutées, en parallèle, en termes de mécanismes et de fonctions possibles dans la régulation de la neurotransmission. Nos travaux confirment donc la coïncidence de la plasticité présynaptique et gliale et, en ce sens, soulèvent l’importance des adaptations gliales pour le maintien de la fonction synaptique. / Synaptic plasticity is a major property of the nervous system, believed to be at the basis of neuronal information processing. This plasticity has been generally described with pre and postsynaptic adaptations. Notably, presynaptic efficacy, referring to the probability of transmitter release associated with the quantal content of a synapse, can be increased or decreased according to the previous history of synapses. Despite this characterization, the mechanisms implicated in the activity-dependent determination of synaptic efficacy remain unknown. Moreover, synaptic plasticity has never been described in terms of glial adaptations, thus limiting our comprehension of neuronal information processing. Nevertheless, the past decade has lead to a redefinition of glial cells functions. Relegated to a passive role of neuronal support in the past, glial cells are now known to be involved in the regulation of neurotransmission. For instance, at the neuromuscular junction (NMJ), perisynaptic Schwann cells (PSCs) are believed to modulate synaptic efficacy and plasticity. Such an active role requires, however, that PSCs adapt to the changing needs of NMJs. Thus, synaptic plasticity must underlie glial plasticity. At the NMJ, changes in synaptic activity result in several morphological and physiological adaptations. Among others, chronic nerve stimulation was shown to decrease synaptic efficacy and short-term depression. Conversely, chronic blockade of postsynaptic nicotinic receptors increases synaptic efficacy. Given that PSCs can detect and respond to neurotransmission with a calcium elevation and that they react to environmental stimuli with morphological, physiological and gene expression adaptations, we propose that prolonged changes in synaptic efficacy, induced by chronic nerve stimulation or chronic blockade of nicotinic receptors, would lead to PSCs adaptations. Thus, in this thesis, we studied, in parallel, long-term presynaptic and glial plasticity, in response to chronic changes in synaptic activity, at the amphibian NMJ. Our results show presynaptic adaptations of synaptic efficacy, short-term plasticity, mitochondrial content and calcium signalling. They also reveal several adaptations of PSCs, related to their sensitivity to neurotransmitters and their calcium responses properties. These presynaptic and glial adaptations are discussed, in parallel, in terms of possible mechanisms and functions in the regulation of neurotransmission. Our work also confirms the coincidence of presynaptic and glial plasticity and, therefore, raises the importance of glial adaptations for the maintenance of synaptic function.
10

The combined role of amyloid precursor protein intracellular domain and amyloid-beta on synaptic transmission

Prozorov, Arsenii 08 1900 (has links)
Ces dernières années, de nombreuses études ont prouvé que la protéine précurseur de l'amyloïde (APP) joue un rôle clé dans le processus de formation de la mémoire, le développement des connexions synaptiques et la régulation de la force synaptique. L’importance d’APP naît du fait que son clivage protéolytique produit le peptide bêta-amyloïde (Aβ), considéré comme l'un des facteurs cruciaux dans le développement de la maladie d'Alzheimer. Les recherches se sont donc concentrées sur Aβ plutôt que sur le domaine intracellulaire APP (APP-ICD). Récemment, il a été démontré qu’APP-ICD affecte l'induction de la plasticité synaptique, et Aβ à haute concentration est connu pour induire une dépression synaptique. Ici, nous montrons qu’APP-ICD et Aβ fonctionnent ensemble et induisent une dépression synaptique en modifiant la transmission synaptique par effet additif. L’activation de la caspase-3 clivant APP-ICD est nécessaire pour la dépression à long terme. Nous constatons que l’activation de la caspase-3 et son site de clivage d’APP-ICD, ainsi que le clivage d’APP par la gamma-sécrétase sont nécessaires à la dépression synaptique dépendante d’Aβ. La microglie assure la clairance d’Aβ et certains effets de plasticité. Nous démontrons qu’elle médie partiellement la dépression synaptique dépendante d’Aβ. Les mécanismes par lesquels APP-ICD et Aβ médient la dépression synaptique ne sont pas connus. Ici, nous discutons de pistes possibles pour la recherche future, notamment des changements dans l'homéostasie du calcium en tant que cible thérapeutique potentielle. Comprendre comment APP-ICD et Aβ travaillent ensemble pour induire une dépression synaptique aiderait à développer de meilleurs traitements pour la maladie d'Alzheimer. / In recent years, more and more evidence has proven that the amyloid precursor protein (APP) plays a key role in the process of memory formation, the development of synaptic connections, and the regulation of synaptic strength. APP rose to prominence since its proteolytic cleavage produces the amyloid-beta (Aβ) peptide, which is believed to be one of the crucial factors in the development of Alzheimer disease. Therefore, most of the research focused on Aβ, while APP intracellular domain (APP-ICD) received much less attention. In a recent study, APP-ICD was shown to affect the induction of synaptic plasticity, and Aβ at high concentration is known to induce synaptic depression. Here we show that APP-ICD works together with Aβ to induce synaptic depression, meaning they have an additive effect that changes synaptic transmission. Caspase-3 cleaves APP-ICD, and its activation is required for long-term depression. We found that the caspase-3 cleavage site of APP-ICD and caspase-3 activation are needed for Aβ-dependent synaptic depression. We also show that cleavage of APP by gamma-secretase is needed for the effect. Microglia mediate clearance of Aβ as well as some plasticity effects. We demonstrate that microglia partially mediate Aβ-dependent synaptic depression. The mechanisms of how APP-ICD and Aβ mediate synaptic depression are not known, here, we discuss possible avenues for future research, specifically changes in calcium homeostasis as a potential therapeutic target. Hence, understanding how APP-ICD and Aβ work together to induce synaptic depression would aid in developing better treatments for Alzheimer disease.

Page generated in 0.6634 seconds